# Acetylcyclopropane as a Five-Carbon Building Block in the Synthesis of some Acetogenin Insect Pheromones $\dagger$ 

Alexander M. Moiseenkov, Boris A. Czeskis, Natalya M. Ivanova and Oleg M. Nefedov* N. D. Zelinsky Institute of Organic Chemistry, USSR Academy of Sciences, 117913 Moscow B-334, Leninsky prosp. 47, USSR


#### Abstract

Interaction of deprotonated acetylcyclopropane cyclohexylimine with several aliphatic alkyl halides, epoxides, and aldehydes efficiently gave the corresponding cyclopropyl ketones. Some of the respective alcohols were rearranged in a highly stereoselective manner under the action of trimethylsilyl bromide in the presence of zinc bromide into the corresponding linear $(E)$-homoallyl bromides. The latter were used, in turn, as key intermediates in concise syntheses of thirteen terminally functionalized straight-chain oligoolefins which are known to constitute acetogenin pheromonal components for more than 65 species of lepidopteran insects.


Most of the known acetogenin-type sex pheromones and attractants produced by moth and butterfly species (Lepidoptera) belong to a series of terminally functionalized, straightchain linear oligoolefins with a fixed stereochemistry of internal, disubstituted $\mathrm{C}=\mathrm{C}$ bond(s). ${ }^{1,2}$ Conventional methods for their synthesis are based now mainly on the transformation of appropriate acetylene and/or olefination of suitable aldehyde precursors. ${ }^{1,3}$ Our own interest in the transoid mono- and 1,3-di-enic representatives of these compounds as well as related semiochemicals has recently led to elaboration of an effective approach based on transformation of zinc chloride-catalysed coupling products of aliphatic aldehydes with acetylcyclopropane as its trimethylsilyl enolate 1 (Scheme 1). ${ }^{4.5}$ Further


Scheme 1 Reagents: i, $\mathrm{ZnCl}_{2}$; ii, $\mathrm{Me}_{3} \mathrm{SiX}, \mathrm{ZnX}_{2}$
steps in this sequence involve simple conversion of intermediate aldol 2 into synthetically useful ${ }^{6-9}$ (un)saturated cyclopropyl ketones and their respective secondary alcohols 3 which were found readily to undergo trimethylsilyl halide-zinc halideinduced, highly stereoselective rearrangement into the corresponding linear homoallyl halides 4 . We have considerably extended the developed methodology, introducing into the above sequence the cyclohexylimino derivative of acetylcyclopropane, which is more reactive than the silyl enol ether 1. As a result, coupling of this five-carbon building block with a series of alkyl halides, epoxides, or aldehydes opened up an easy access to compounds of types $\mathbf{3}$ and 4 ; some of them were further used as key intermediates in short syntheses of several acetogenin sex pheromones and attractants, which are described below. ${ }^{10}$

## Results and Discussion

Interaction of the organolithium derivative of the above
$\dagger$ Submitted to mark the 150th anniversary of the Chemical Society/Royal Society of Chemistry.


Scheme 2 Reagents and conditions: i, BuLi, THF HMPA hexane, -70 to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, RX ( $\mathbf{a}, \mathrm{X}=\mathbf{I}, \mathbf{b}-\mathbf{f}, \mathrm{X}=\mathrm{Br}$ ), THF, -70 to $25^{\circ} \mathrm{C}$, 2 h ; iii, silica gel, without solvent, $25^{\circ} \mathrm{C}, 15 \mathrm{~min}$; iv, LDA. THF HMPAhexane, -30 to $0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{v}, \mathrm{R} \mathrm{CHCH}_{2} \mathrm{O}, \mathrm{THF},-70$ to $0^{\circ} \mathrm{C}, 40 \mathrm{~min}$; vi, RCHO, THF, -70 to $5^{\circ} \mathrm{C}, 20 \mathrm{~min}$; vii, TsOH (cat.), $\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}$, 20 min
mentioned imine 5 prepared in tetrahydrofuran (THF), in the presence of hexamethylphosphoramide (HMPA) as a cosolvent, with alkyl and alkenyl halides furnished intermediate ketimines 6 (Scheme 2). Their standard hydrolytic cleavage in the presence of proton or Lewis acids ${ }^{11}$ proceeded slowly, however (for ca. 24 h ), to give the respective cyclopropyl ketones 7a-f in less than $50 \%$ yield. This could markedly be increased, up to $95 \%$, on brief ( $c a .15 \mathrm{~min}$ ) exposure of the crude imines 6 to a 3-4-fold amount (w/w) of silica gel under 'dry state' conditions. ${ }^{12}$

Metallation of the imine 5 with lithium diisopropylamide (LDA) and interaction with ethylene and propylene oxides, followed by hydrolytic cleavage of intermediate products on silica gel, led to the $\gamma$-hydroxy ketones $\mathbf{8 a}, \mathbf{b}$ in high overall yield. A similar reaction sequence with the participation of imine 5 and several aldehydes smoothly afforded the $\beta$-hydroxy ketones 2a-e. Their toluene- $p$-sulphonic acid ( TsOH )-catalysed dehydration gave almost quantitatively the conjugated ketones 9a-e. It is noteworthy that the lithiated imine 5 interacts with the above electrophiles regiospecifically at the methyl group in all cases.


Scheme 3 Reagents and conditions: i, BuLi, THF-HMPA-hexane, -70 to $-15^{\circ} \mathrm{C}, 30 \mathrm{~min}$; then THPO[CH $]_{n} \mathrm{CHO}, \mathrm{THF},-70$ to $-10^{\circ} \mathrm{C}, 30 \mathrm{~min}$; ii, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP (cat.), -10 to $25^{\circ} \mathrm{C}, 50 \mathrm{~min}$; iii, $\mathrm{NaOH}, \mathrm{Et}_{2} \mathrm{O}$, MeOH (cat.), $25^{\circ} \mathrm{C}, 20 \mathrm{~min}$; iv, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}, \mathrm{NaHCO}_{3}$, aq. EtOH, $80^{\circ} \mathrm{C}, 7 \mathrm{~h}$; v, PPTS (cat.), $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$; vi, $\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{HMPA}$-hexane, $-30^{\circ} \mathrm{C}$; then toluene-p-sulphonyl chloride ( TsCl ), -30 to $25^{\circ} \mathrm{C}, 15 \mathrm{~min}$; vii, $\mathrm{NaBr}, \mathrm{DMF}$, $50^{\circ} \mathrm{C}, 1 \mathrm{~h}$; viii, $(\mathrm{COCl})_{2}, \mathrm{Me}_{2} \mathrm{SO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $-15^{\circ} \mathrm{C}, 2 \mathrm{~h}$

b; $R=P r$
f, $\mathrm{R}=(\mathrm{Z})-\mathrm{BuCH}=\mathrm{CH}\left[\mathrm{CH}_{2}\right]_{7} \quad \square 27 \mathrm{R}=\mathrm{H}$
Scheme 4 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; ii, $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{ZnBr}_{2}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10$ to $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii, $\mathrm{BrMg}\left[\mathrm{CH}_{2}\right]_{n} \mathrm{OMgBr}$, $\mathrm{Li}_{2} \mathrm{CuCl}_{4}$ (cat.), THF-HMPA, -70 to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{DMAP}$ (cat.), $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; v, PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; vi, AcOK, DB-18-C-6 (cat.), $\mathrm{MeCN}, 80^{\circ} \mathrm{C}, 15 \mathrm{~h}$; vii, NaOH , aq. $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 15 \mathrm{~min}$

Necessary for the preparation of previously unknown ketones 7 f and $9 \mathrm{e},(Z)$-bromide 15 and ( $Z$ )-aldehyde 16 were synthesized according to the method of Julia ${ }^{13}$ from the corresponding tetrahydropyranyl (THP) ethers of $\omega$-hydroxy aldehydes and lithiated sulphone 10 via crude acetate 11 obtained, in turn, from the intermediate alcohols in the presence of 4 -(dimethylamino) pyridine (DMAP) as catalyst (Scheme 3). It should be noted that the next step in the sequence, leading to vinyl sulphones of type 12, is normally effected by prolonged (for ca. $24 \mathrm{~h})$ treatment of the precursors indicated with powdered alkali in dry diethyl ether. We have found that employment in this case of a catalytic amount of methanol greatly accelerates the reaction, thus securing full conversion of the starting material 11 within ca. 20 min only. Further treatment of the crude vinyl sulphones $\mathbf{1 2}$ with sodium dithionite smoothly gave the ethers 13a, b, which were first quantitatively deprotected using pyridinium toluene-p-sulphonate (PPTS) to give the known ( $Z$ )-alcohols 14a, b, which were then converted by standard methods into the desired bromide $\mathbf{1 5}$ and aldehyde 16.

According to NMR and capillary GLC data, stereochemical purity of the olefins 13-16 was greater than $95 \%$.

We have recently demonstrated the applicability of the cyclopropyl building blocks $7 \mathbf{b}-\mathbf{e}$ and $9 \mathbf{a}-\mathbf{d}$ for the construction of a variety of Lepidoptera sex pheromones and attractants. ${ }^{4.5}$ The former series of the precursors 7 now became particularly available from the acetylcyclopropane derivative 5 . Following the elaborated approach, and starting from some of the cyclopropyl ketones 7-9 prepared as mentioned above, total syntheses of several mono-, di- and tri-ene representatives of the insect behaviour regulators were performed. Starting from the cyclopropyl ketones $\mathbf{7 a}, \mathbf{b}, \mathbf{f}$ the ( $E$ )-monoolefinic alcohols 19 21, their acetates 22-24, and aldehyde $\mathbf{2 5}$ as well as octadeca-3E,13Z-dienyl acetate 26 and respective alcohol 27 were obtained (Scheme 4). For this purpose, the ketones 7a, b,f were first reduced to the corresponding cyclopropyl alcohols 17a, $\mathbf{b}$, f, which were then treated with trimethylsilyl bromide and a catalytic amount of zinc bromide following the procedure reported by us, ${ }^{4}$ to give the rearranged ( $E$ )-homoallyl bromides


a; $R=E t$
e; $\mathrm{R}=(\mathrm{Z})-\mathrm{BuCH}=\mathrm{CH}\left[\mathrm{CH}_{2}\right]_{3}$

Scheme 5 Reagents and conditions: i, $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-50 \mathrm{C}, 15 \mathrm{~min}$; ii, $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{ZnBr}_{2}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20 \mathrm{C}, 15 \mathrm{~min}$; iii, $\mathrm{BrMg}\left[\mathrm{CH}_{2}\right]_{6} \mathrm{OMgBr}^{2} \mathrm{Li}_{2} \mathrm{CuCl}_{4}$ (cat.). THF-HMPA, -70 to $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{DMAP}$ (cat.), $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; v, KCN, DB-18-C-6 (cat.), $\mathrm{MeCN}, 80 \mathrm{C}, 12 \mathrm{~h}$; vi, DIBAL, PhMe-hexane, $-70^{\circ} \mathrm{C}, 40 \mathrm{~min}$; vii, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$

18a, $\mathbf{b}, \mathbf{f}$ in $80-100 \%$ yield and of more than $95 \%$ stereochemical purity (NMR and GLC data). Subsequent dilithium tetrachlorocuprate ${ }^{14}$-catalysed coupling of the bromides $\mathbf{1 8 a}, \mathbf{b}, \mathbf{f}$ with the Grignard reagents prepared, under the conditions recommended. ${ }^{15}$ from the $\alpha, \omega$-bromoalkanols $\mathrm{Br}\left[\mathrm{CH}_{2}\right]_{n} \mathrm{OH}$ led smoothly to the primary alcohols $\mathbf{1 9 - 2 1}$, which were readily convertible into their respective acetates 22-24. Finally, pyridinium chlorochromate ( PCC ) oxidation of the alcohol 20 gave the aldehyde $\mathbf{2 5}$, while treatment of the bromide $\mathbf{1 8 f}$ with potassium acetate in the presence of dibenzo-18-crown-6 (DB-18-C-6) furnished the acetate $\mathbf{2 6}$, which was further hydrolysed to the alcohol 27.

Among the compounds thus synthesized the dienes 26 and 27 are known to be sex pheromones of the female lesser peachtree borer (Synanthedon pictipes) ${ }^{16}$ and the poplar twig clearwing moth (Paran-threne tabaniformis), ${ }^{17}$ respectively, while their mixture attracts the strawberry crown moth (Synanthedon bibionipennis) ${ }^{18}$ and the raspberry clearwing moth ( Pennisetia hylaeformis). ${ }^{19}$ According to earlier data, ${ }^{1}$ the alcohols $\mathbf{1 9}$ and $\mathbf{2 0}$ and the aldehyde $\mathbf{2 5}$ are the components of sex pheromones and attractants for six Lepidoptera species, while the acetates 22 and 23 display the same biological functions for 18 and 30 species, respectively.

In addition, compounds $\mathbf{1 9}, \mathbf{2 0}, 22,23$ and 25 , either singly or in combinations, have been recently shown to constitute pheromonal components for more than 15 species of Lepidoptera insects. ${ }^{20} 34$ For example, the alcohol 19 and its corresponding acetate 22 were identified as the major components of the sex attractant for the male pine shootmoth (Rhyacionia buoliana). ${ }^{20}$ On the other hand, the acetate 22 serves itself as sex attractant for the male purple striped shootworm (Zeiraphera unfortunana). ${ }^{25}$ The same role was revealed for the acetate 23 isolated from the female leafroller moth (Syndemis musculana), ${ }^{26}$ sunflower moth (Cochylis hospes), ${ }^{27}$ and lima-bean pod borer (Etiella zinckenella). ${ }^{28}$ Finally, the aldehyde $\mathbf{2 5}$ is known as a pheromonal component emitted by the female eastern spruce budworm (Choristoneura fumiferana). ${ }^{30}$

Based on our developed approach the unsaturated cyclopropyl ketones $9 \mathbf{a}$, e were transformed into the target tetradeca$9 E, 11 E$-dienyl acetate 31, hexadeca- $4 E, 6 E, 11 Z$-trienal 33, and the related acetate 34 (Scheme 5). Among these compounds, the former diene 31, along with the respective 14 -carbon $(E)$-olefin 23. were recently identified as the major sex pheromone components of the female light brown applemoth (Epiphyas postrittana) ${ }^{35}$ while the two latter trienes, $\mathbf{3 3}$ and $\mathbf{3 4}$,
demonstrated the same function for the erisilkworm moth (Samia cynthia ricini). ${ }^{36}$ Their synthesis was performed by cerium(III) chloride-induced sodium borohydride reduction ${ }^{37}$ of the precursors $9 \mathbf{9}, \mathbf{e}$, followed by isomerization of the intermediate cyclopropylallyl alcohols 28a, e to the key homoallyl bromides 29a, e. Subsequent six-carbon homologation of the bromide 29a led, as in the above cases, to the dienol 30, and then to its corresponding acetate $\mathbf{3 1}$ in good overall yield. On the other hand, intermediate cyanide 32 , readily available from the bromide $\mathbf{2 9 e}$, was reduced with diisobutylaluminium hydride (DIBAL) to the aldehyde 33 , which was converted, in turn, into the acetate 34.

The strategy developed was finally applied to the total synthesis of tridec- $4 E$-enyl acetate 38 and trideca- $4 E, 7 Z$-dienyl acetate 43 which are known to be sex pheromone components of the female tomato pinworm moth (Keiferia lycopersicella) ${ }^{38}$ and the potato tuberworm moth (Phtorimaea operculella), ${ }^{39}$ respectively (Scheme 6). Hence, the starting $\gamma$-hydroxy ketone 8a was first transformed stereospecifically, via intermediate cyclopropyl derivative 35 , to the previously unknown homoallylic bromide 36 containing an ( $E$ )-hydroxypentenyl fragment characteristic of both the above pheromonal molecules. Würtz-type six-carbon elongation of the bromide 36 with an appropriate Grignard reagent furnished the alcohol 37 and, subsequently, its corresponding acetate $\mathbf{3 8}$ in $88 \%$ overall yield. On the other hand, the bromo alcohol 36 was also transformed to the THP ether 39 and then to the sulphone 40 . Employment of the latter for Julia olefination of hexanal gave the ether 41, which was further hydrolysed to the alcohol 42 , which was then converted, in turn, into the target acetate $\mathbf{4 3}$ in good overall yield.

The structures of all the compounds under consideration were confirmed by spectral methods as well as by comparison of their physicochemical properties with those available for the known products. Purity of the hitherto unknown compounds was additionally checked by their microanalysis data. According to ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and capillary GLC data, stereochemical purity of the olefins prepared is greater than $95 \%$ in all cases.

The data presented above illustrate that readily available acetylcyclopropane is a versatile five-carbon building block for the preparation of various alkyl- and alkenyl-cyclopropyl ketones which, in turn, serve as valuable intermediates for effective regio- and stereo-controlled synthesis of a number of linear olefins, including some acetogenin-type insect pheromones.


Scheme 6 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 25 \mathrm{~min}$; ii, $\mathrm{Me}_{3} \mathrm{SiBr}, \mathrm{ZnBr}_{2}$ (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}, 30 \mathrm{~min}$; iii, $\mathrm{n}-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{MgBr}^{\circ} \mathrm{Li}_{2} \mathrm{CuCl}_{4}$ (cat.), THF, -60 to $25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iv, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, DMAP (cat.), $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$; v, 3,4-dihydro- 2 H -pyran, PPTS (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; vi, $\mathrm{PhSO}_{2} \mathrm{Na}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$; vii, BuLi, THF-HMPA-hexane, -70 to $-15^{\circ} \mathrm{C}, 30 \mathrm{~min}$; then hexanal, THF, -70 to $-10^{\circ} \mathrm{C}, 30 \mathrm{~min}$; viii, $\mathrm{Ac}_{2} \mathrm{O}$, DMAP (cat.), -10 to $25^{\circ} \mathrm{C}, 50 \mathrm{~min}$; ix, $\mathrm{NaOH}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{MeOH}$ (cat.), $25^{\circ} \mathrm{C}, 20 \mathrm{~min}$; $\mathrm{x}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}, \mathrm{NaHCO}_{3}, \mathrm{aq} . \mathrm{EtOH}, 80^{\circ} \mathrm{C}, 7 \mathrm{~h}$; xi, PPTS (cat.), $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$

## Experimental

B.p.s are uncorrected. IR spectra were recorded for solutions in chloroform, by using a Perkin-Elmer 577 instrument. UV spectra were measured for solutions in ethanol on a Specord UV-VIS Zeiss Jena spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuteriochloroform (tetramethylsilane as internal standard) on a Bruker WM-250 (250 MHz ) and a Bruker AM-300 (75 MHz) spectrometer, respectively. $J$-Values are given in Hz . Mass spectra were obtained with a Varian MAT CH-6 instrument at 70 eV . GLC analyses were performed using a Biochrom gas chromatograph equipped with a $50 \mathrm{~m} \times 0.2 \mathrm{~mm}$ capillary column coated with OV-275; a flame ionization detector was used. Column chromatography was carried out on silica gel (Chemapol Silicagel L 40/100 for flash chromatography, Czechoslovakia).

1-Cyclopropylpropan-1-one 7a.-To a stirred solution of the imine $5^{40}(3 \mathrm{~g}, 18.2 \mathrm{mmol})$ in THF ( $5 \mathrm{~cm}^{3}$ ) and HMPA ( $1 \mathrm{~cm}^{3}$ ) under argon at $-70^{\circ} \mathrm{C}$ was added dropwise a solution of butyllithium ( $1.4 \mathrm{~mol} \mathrm{dm}^{-3} ; 13.6 \mathrm{~cm}^{3}, 19.04 \mathrm{mmol}$ ) in hexane. The mixture was warmed during 15 min to $0^{\circ} \mathrm{C}$, kept at this temperature for 45 min , and then treated at $-70^{\circ} \mathrm{C}$ with a solution of methyl iodide ( $2.71 \mathrm{~g}, 19.1 \mathrm{mmol}$ ) in THF ( $5 \mathrm{~cm}^{3}$ ) for 5 min . The reaction mixture was warmed for 10 min to $25^{\circ} \mathrm{C}$, stirred at this temperature for 2 h , then poured into water $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether $\left(3 \times 15 \mathrm{~cm}^{3}\right)$. The extract was washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and evaporated. The residue ( 3.5 g ) was absorbed onto silica gel $(12 \mathrm{~g})$ and after 15 min at $25^{\circ} \mathrm{C}$ the product was eluted with pentane ( $80 \mathrm{~cm}^{3}$ ), the eluate was concentrated at atmospheric pressure, and the residue was distilled to give the ketone $7 \mathbf{a}^{9}$ $(1.55 \mathrm{~g}, 87 \%)$ as a liquid, b.p. $127-128^{\circ} \mathrm{C} ; n_{\mathrm{D}}^{21} 1.4306 ; \delta_{\mathrm{H}} 0.8-$ $1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $1.08(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.92$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $2.58\left(2 \mathrm{H}, \mathrm{q}, J 7,2-\mathrm{H}_{2}\right)$.

1-Cyclopropylpentan-1-one 7b.--Similarly, starting from the imine $5(4.5 \mathrm{~g}, 27.3 \mathrm{mmol})$, butyllithium ( $1.4 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 21.4 \mathrm{~cm}^{3}$, $29.96 \mathrm{mmol})$, and propyl bromide ( $4.03 \mathrm{~g}, 32.8 \mathrm{mmol}$ ) in THF ( $18 \mathrm{~cm}^{3}$ )-HMPA ( $1.5 \mathrm{~cm}^{3}$ ) the crude product ( 6.2 g ) was obtained and was adsorbed onto silica gel ( 16 g ). After 15 min at $25^{\circ} \mathrm{C}$ the whole mixture was applied to a column of silica gel $(100 \mathrm{~g})$ and eluted with hexane-diethyl ether $(97: 3)$ to afford the title compound $7 \mathbf{b b}^{9}(2.87 \mathrm{~g}, 84 \%)$ as a liquid, b.p. $57-58 \mathrm{C}$ at $9 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4352 ; \grave{\delta}_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of
cyclopropane), 0.93 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), $1.3-1.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $2.55\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$.

1-Cyclopropylnonan-1-one 7c.--As described above, starting from the imine $5(2.85 \mathrm{~g}, 17.3 \mathrm{mmol})$ and heptyl bromide ( 3.08 g , 17.2 mmol ) and following chromatography on silica gel, the ketone $7 \mathrm{c}^{8}(2.8 \mathrm{~g}, 89 \%)$ was obtained as a liquid, b.p. $73-74^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4470 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $2.53\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$.

1-Cyclopropylundecan-1-one 7d.-In the same way, starting from the imine $5(0.5 \mathrm{~g}, 3.0 \mathrm{mmol})$ and nonyl bromide $(0.66 \mathrm{~g}$, $3.2 \mathrm{mmol})$, the title product $7 \mathbf{d}(0.56 \mathrm{~g}, 88 \%)$ was obtained as a liquid, b.p. $90-91^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{25} 1.4488$ (Found: C, 79.6; $\mathrm{H}, 12.35 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 79.94 ; \mathrm{H}, 12.46 \%$; $v_{\text {max }} / \mathrm{cm}^{-1}$ $820,910,1030,1070,1090,1140,1200,1210,1240,1395,1470$, $1700,2865,2940,3020$ and $3100 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.88(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$ and $2.53\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right) ; m /=210\left(\mathrm{M}^{+}, 4^{\circ} \%\right)$, 97 (14), 85 (13), 84 (100), 83 (12), 69 (71) and 41 (29).
(E)-1-Cyclopropylundec-6-en-1-one 7e.--Similarly, starting from the imine $5(2.08 \mathrm{~g}, 12.6 \mathrm{mmol})$ and $(E)$-non-4-enyl bromide ${ }^{41}(2.58 \mathrm{~g}, 12.6 \mathrm{mmol})$, the ketone $7 \mathrm{e}(2.33 \mathrm{~g}, 89 \%)$ was obtained as a liquid, b.p. $80-81^{\circ} \mathrm{C}$ at $0.04 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4608$ (Found: C, 80.8; $\mathrm{H}, 11.5 . \mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}$ requires $\mathrm{C}, 80.71 ; \mathrm{H}$, $11.61 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 730,820,900,970,1020,1050,1085,1190$, $1220,1390,1450,1695,2860,2930,2960,3000$ and $3090 ; \grave{\delta}_{\mathrm{H}}$ $0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, 1.2-1.7 ( $8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.9-2.1(4 \mathrm{H}, \mathrm{m}, 5-$ and $\left.8-\mathrm{H}_{2}\right), 2.53\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$ and $5.39(2 \mathrm{H}, \mathrm{m}, 6-$ and $7-\mathrm{H})$; $m /=208\left(\mathrm{M}^{+}, 4 \%\right), 123(16), 97(48), 84$ (55), 69 (100), 67 (22), 55 (44) and 41 (74).
(Z)-1-Ciclopropylpentadec-10-en-1-one 7f.--As in the above case, starting from the imine $5(1.51 \mathrm{~g}, 9.15 \mathrm{mmol})$ and the bromide 15 described below ( $2.17 \mathrm{~g}, 8.31 \mathrm{mmol}$ ), the title product $7 \mathrm{f}(2.06 \mathrm{~g}, 94 \%)$ was obtained as an oil, $n_{\mathrm{D}}^{21} 1.4642$ (Found: C, 81.9; $\mathrm{H}, 12.5 . \quad \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{C}, 81.75 ; \mathrm{H}, 12.20^{\circ}$ ) ; $v_{\text {max }} / \mathrm{cm}^{-1} 665,725,880,905,970,1060,1205,1390,1455,1685$, $2860,2930,3000$ and $3090 ; \delta_{\mathrm{H}} 0.8-1.1\left(7 \mathrm{H}, \mathrm{m}, \mathrm{Me}, \mathrm{CH}_{2}\right.$ of cyclopropane), $1.2-1.6\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}$, 9 - and $\left.12-\mathrm{H}_{2}\right), 2.53\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$ and $5.30-5.45(2 \mathrm{H}, \mathrm{m}$,

10- and $11-\mathrm{H}) ; m /=264\left(\mathrm{M}^{+}, 6 \%\right), 178(10), 151$ (11), 97 (45), 84 (79), 69 (100), 55 (98) and 41 (72).

1-Cyclopropyl-4-hydroxybutan-1-one 8a.--To a stirred solution of LDA [from diisopropylamine ( $6.06 \mathrm{~g}, 60.0 \mathrm{mmol}$ ) and butyllithium in hexane ( $1.58 \mathrm{~mol} \mathrm{dm}^{-3} ; 36.2 \mathrm{~cm}^{3}, 57.2 \mathrm{mmol}$ )] in THF ( $20 \mathrm{~cm}^{3}$ ) at $-30^{\circ} \mathrm{C}$ under argon was added dropwise a solution of the imine $5(9 \mathrm{~g}, 54.5 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)-$ HMPA ( $3 \mathrm{~cm}^{3}$ ). The mixture was warmed during 15 min to 0 C , kept at this temperature for 45 min , and then treated at $-70^{\circ} \mathrm{C}$ with a solution of ethylene oxide $\left(4 \mathrm{~cm}^{3}, 80.6 \mathrm{mmol}\right)$ in THF ( $10 \mathrm{~cm}^{3}$ ) for 5 min . The reaction mixture was warmed during 40 min to $0^{\circ} \mathrm{C}$, then was poured into water $\left(90 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether $\left(3 \times 45 \mathrm{~cm}^{3}\right)$. The extract was washed with brine $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, then evaporated, and the residue ( 13.1 g ) was adsorbed onto silica gel $(22 \mathrm{~g})$. After 15 min at $25^{\circ} \mathrm{C}$ the whole mixture was applied to a column of silica gel $(300 \mathrm{~g})$ and chromatographed by using gradient elution from hexane to hexane-diethyl ether (1:9) to give the ketol $8 \mathbf{a}^{42}$ ( 6.77 $\mathrm{g}, 97 \%$ ) as a liquid, b.p. $94-95^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; n_{\mathrm{D}}^{22} 1.4674 ; \delta_{\mathrm{H}} 0.8-$ $1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.7-2.1\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}, 3-\mathrm{H}_{2}\right)$, $2.71\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$ and $3.63\left(2 \mathrm{H}, \mathrm{t}, J 7,4-\mathrm{H}_{2}\right)$.

1-Cyclopropyl-4-hydroxypentan-1-one 8b.-Similarly, a solution of the imine $5(1.5 \mathrm{~g}, 9.1 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$-HMPA ( $0.5 \mathrm{~cm}^{3}$ ) was treated with a solution of LDA ( 9.5 mmol ) in hexane $\left(6 \mathrm{~cm}^{3}\right)$-THF $\left(5 \mathrm{~cm}^{3}\right)$, followed by the addition of a solution of propylene oxide $(1.05 \mathrm{~g}, 18.1 \mathrm{mmol})$ in THF $\left(2 \mathrm{~cm}^{3}\right)$ to give the crude product ( 2.38 g ), which was adsorbed onto silica gel ( 6 g ). The whole mixture was then chromatographed on silica gel ( 50 g ) with gradient elution from hexane to hexanediethyl ether ( $2: 3$ ) to afford the title compound $\mathbf{8 b}(1.2 \mathrm{~g}, 93 \%$ ) as a liquid; b.p. $75-76^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{22} 1.4650$ (Found: $\mathrm{C}, 67.8$; $\mathrm{H}, 9.9 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 67.57 ; \mathrm{H}, 9.92 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 815$, $870,900,950,1020,1070,1120,1220,1390,1450,1695,2980$, 3020,3460 and $3620 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $1.20(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{Me}), 1.6-2.0\left(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}_{2}\right.$ and $\mathrm{CH}), 2.73\left(2 \mathrm{H}, \mathrm{t}, J 7,2-\mathrm{H}_{2}\right)$ and $3.8(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}) ; m / z 127$ $\left(\mathrm{M}^{+}-15,4 \%\right), 125(10), 124(3), 99(8), 84(30), 69(100), 55$ (15), 43 (17) and 41 (37).

1-Cyclopropyl-3-hydroxypentan-1-one 2a.--To a stirred solution of LDA [from diisopropylamine ( $3.7 \mathrm{~g}, 36.6 \mathrm{mmol}$ ) and butyllithium in hexane $\left(1.59 \mathrm{~mol} \mathrm{dm}^{-3} ; 22.0 \mathrm{~cm}^{3}, 35.0\right.$ $\mathrm{mmol})$ ] in THF ( $10 \mathrm{~cm}^{3}$ ) at $-30^{\circ} \mathrm{C}$ under argon was added dropwise a solution of the imine $5(5.5 \mathrm{~g}, 33.3 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$-HMPA $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was warmed for 15 min to $0^{\circ} \mathrm{C}$, kept at this temperature for 45 min , and then treated at -70 C with a solution of propanal $(2.03 \mathrm{~g}, 35.0 \mathrm{mmol})$ in THF ( $10 \mathrm{~cm}^{3}$ ) during 10 min . The reaction mixture was then warmed during 20 min to $5^{\circ} \mathrm{C}$, poured into water $\left(50 \mathrm{~cm}^{3}\right)$, and extracted with diethyl ether ( $3 \times 30 \mathrm{~cm}^{3}$ ). The extract was washed with brine $\left(2 \times 10 \mathrm{~cm}^{3}\right)$, then evaporated, and the residue $(7.5 \mathrm{~g})$ was adsorbed onto silica gel ( 15 g ). After 15 min at 25 C the whole mixture was applied to a column of silica gel ( 150 g ) and eluted with hexane-diethyl ether $(9: 1)$ to afford the hidroxy ketone $\mathbf{2 a}\left(3.41 \mathrm{~g}, 72 \%\right.$ ) as a liquid, b.p. $97-98^{\circ} \mathrm{C}$ at 10 mmHg ; $n_{\mathrm{D}}^{20} 1.4604$ (Found: $\mathrm{C}, 67.6 ; \mathrm{H}, 9.9 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 67.57 ; \mathrm{H}, 9.92 \%$ ); $v_{\max }\left(\mathrm{cm}^{-1} 900,960,1060,1140\right.$, $1195,1210,1240,1310,1395,1470,1690,2940,2980,3020$, 3100,3510 and $3680 ; \delta_{\mathrm{H}} 0.8-1.1$ ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ of cyclopropane), $0.96\left(3 \mathrm{H}, \mathrm{t}, J 7\right.$, Me), 1.4-.1.6 ( $\left.2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 1.93$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ ) 2.71 ( $2 \mathrm{H}, \mathrm{AB}$-part of ABX spectrum, $\delta_{\mathrm{A}}$ 2.64, $\left.\delta_{\mathrm{B}} 2.78, J_{\mathrm{AB}} 18 . J_{\mathrm{AX}} 9, J_{\mathrm{BX}} 3,2-\mathrm{H}_{2}\right)$ and $3.97(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}) ;$ $m=124\left(\mathrm{M}^{+}-18,8_{\%}^{\circ}\right), 111(12), 87(8), 84(8), 83(9), 69$ (100). 57 (11). 43 (22) and 41 (36).

[^0]ution of the imine $5(1.5 \mathrm{~g}, 9.1 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$-HMPA $\left(1 \mathrm{~cm}^{3}\right)$ was treated with a solution of LDA ( 9.5 mmol ) in hexane $\left(6 \mathrm{~cm}^{3}\right)$-THF $\left(4 \mathrm{~cm}^{3}\right)$ followed by a solution of pentanal $(0.82 \mathrm{~g}, 9.5 \mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ to give the crude product $(2.6 \mathrm{~g})$, which was adsorbed onto silica gel $(6.5 \mathrm{~g})$. The whole mixture was then chromatographed on silica gel ( 60 g ) to furnish the title compound $\mathbf{2 b}(1.18 \mathrm{~g}, 76 \%)$ as a liquid, b.p. $97-98^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{22} 1.4593$ (Found: $\mathrm{C}, 70.7 ; \mathrm{H}, 10.7$. $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.55 ; \mathrm{H}, 10.66 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 900$, $1020,1050,1135,1190,1235,1310,1390,1470,1690,2930$, $2960,3005,3090$ and $3530 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.91\left(3 \mathrm{H}, \mathrm{t}, J 7\right.$, Me), $1.2-1.6\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.72\left(2 \mathrm{H}, \mathrm{AB}\right.$-part of ABX spectrum, $\delta_{\mathrm{A}}$ $\left.2.65, \delta_{\mathrm{B}} 2.79, J_{\mathrm{AB}} 18, J_{\mathrm{AX}} 9, J_{\mathrm{BX}} 3,2-\mathrm{H}_{2}\right)$ and $4.03(1 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H}) ; m / z 152\left(\mathrm{M}^{+}-18,7 \%\right), 113$ (34), 87 (8), 84 (16), 69 (100), 57 (14), 55 (12), 43 (47) and 41 (62).

1-Cyclopropyl-3-hydroxynonan-1-one 2c.--As described above, starting from the imine $5(3.5 \mathrm{~g}, 21.2 \mathrm{mmol})$, LDA ( 22.3 $\mathrm{mmol})$, and heptanal $(2.54 \mathrm{~g}, 22.3 \mathrm{mmol})$ in a mixture of hexane ( $15.1 \mathrm{~cm}^{3}$ ), HMPA $\left(1.5 \mathrm{~cm}^{3}\right)$, and THF $\left(21 \mathrm{~cm}^{3}\right)$ and after chromatography on silica gel, the ketol $2 \mathrm{c}(3.19 \mathrm{~g}, 76 \%$ ) was obtained as a liquid, b.p. $89-90^{\circ} \mathrm{C}$ at $0.07 \mathrm{mmHg} ; n_{\mathrm{D}}^{19} 1.4602$ (Found: $\mathrm{C}, 72.65 ; \mathrm{H}, 11.1 . \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.68 ; \mathrm{H}$, $11.18 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 910,1030,1080,1135,1200,1250,1300$, $1390,1460,1690,2940,2960$ and $3550 ; \delta_{\mathrm{H}} 0.8-1.1(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ of cyclopropane $), 0.88(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.6(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}\right), 1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.72(2 \mathrm{H}, \mathrm{AB}$-part of ABX spectrum, $\left.\delta_{\mathrm{A}} 2.65, \delta_{\mathrm{B}} 2.79, J_{\mathrm{AB}} 18, J_{\mathrm{AX}} 9, J_{\mathrm{BX}} 3,2-\mathrm{H}_{2}\right)$ and $4.03(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}) ; m / z 180\left(\mathrm{M}^{+}-18,0.5 \%\right), 113$ (92), 84 (35), 71 (19), $70(35), 69(59), 57(20), 55(49), 43(66)$ and 41 (100).

1-Cyclopropyl-3-hydroxyundecan-1-one 2d.-In the same way, starting from the imine $5(1.5 \mathrm{~g}, 9.1 \mathrm{mmol})$ and nonanal $(1.36 \mathrm{~g}, 9.6 \mathrm{mmol})$, the title compound $2 \mathrm{~d}(1.68 \mathrm{~g}, 82 \%)$ was obtained as a liquid, b.p. $100-101^{\circ} \mathrm{C}$ at $0.03 \mathrm{mmHg} ; n_{\mathrm{D}}^{22} 1.4608$ (Found: $\mathrm{C}, 74.0 ; \mathrm{H}, 11.3 . \mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.29 ; \mathrm{H}$, $11.58 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 900,1025,1080,1130,1240,1300,1395$, $1470,1690,2930,3000$ and $3540 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.88(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.72\left(2 \mathrm{H}, \mathrm{AB}\right.$-part of ABX spectrum, $\delta_{\mathrm{A}}$ $\left.2.65, \delta_{\mathrm{B}} 2.79, J_{\mathrm{AB}} 18, J_{\mathrm{AX}} 9, J_{\mathrm{BX}} 3,2-\mathrm{H}_{2}\right)$ and $4.03(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$; $m / z 208\left(\mathrm{M}^{+}-18,3 \%\right), 113(53), 84(20), 71(14), 69(100), 57$ (25), 55 (23), 43 (36) and 41 (50).
(Z)-1-Cyclopropyl-3-hydroxydodec-7-en-1-one 2e.--As in the above case, starting from the imine $5(1.41 \mathrm{~g}, 8.55 \mathrm{mmol})$ and the dec-5Z-enal 16 described below ( $1.2 \mathrm{~g}, 7.79 \mathrm{mmol}$ ), the title ketol $2 \mathbf{e}(1.72 \mathrm{~g}, 93 \%)$ was obtained as an oil, b.p. $106.5-108^{\circ} \mathrm{C}$ at $0.02 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4748$ (Found: $\mathrm{C}, 75.45 ; \mathrm{H}, 11.1 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.58 ; \mathrm{H}, 10.99 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 660,700,840,905$, $1025,1110,1195,1310,1395,1460,1690,2960,3010,3100$ and $3670 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane $), 0.88(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}), 1.2-1.6\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.9-2.1(4 \mathrm{H}$, $\mathrm{m}, 6-$ and $\left.9-\mathrm{H}_{2}\right), 2.71\left(2 \mathrm{H}, \mathrm{AB}\right.$-part of ABX spectrum, $\delta_{\mathrm{A}} 2.66$, $\left.\delta_{\mathrm{B}} 2.76, J_{\mathrm{AB}} 18, J_{\mathrm{AX}} 9, J_{\mathrm{BX}} 3,2-\mathrm{H}_{2}\right), 4.02(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and 5.25-5.45 ( $2 \mathrm{H}, \mathrm{m}, 7-$ and $8-\mathrm{H}) ; m /=238\left(\mathrm{M}^{+}, 1 \%\right) .220(4), 136$ (17), 126 (19), 110 (39), 95 (25), 84 (23), 81 (53), 69 (100), 55 (51), 43 (46) and 41 (94).
(E)-1-Cyclopropylpent-2-en-1-one 9a.-A solution of the ketol $\mathbf{2 a}(2.6 \mathrm{~g}, 18.3 \mathrm{mmol})$ and TsOH monohydrate $(0.1 \mathrm{~g})$ in benzene ( $60 \mathrm{~cm}^{3}$ ) was refluxed with azeotropic removal of water (DeanStark water separator) for ca. 20 min (GLC monitoring). The reaction mixture was washed successively with saturated aq. sodium hydrogen carbonate $\left(2 \times 10 \mathrm{~cm}^{3}\right)$ and brine $(3 \times 15$ $\left.\mathrm{cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and distilled to give the unsaturated ketone $9 \mathbf{a}^{4}(2.05 \mathrm{~g}, 90 \%)$ as a liquid, b.p. $96^{\circ} 97^{\circ} \mathrm{C}$
at $35 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4762 ; \delta_{\mathrm{H}} 0.8-1.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), 1.11 ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), 2.13 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ ), 2.28 ( 2 H , br quint, $\left.J 7,4-\mathrm{H}_{2}\right), 6.23(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16,2-\mathrm{H})$ and $6.97(1 \mathrm{H}$, $\mathrm{dt}, J 16$ and $7,3-\mathrm{H}$ ).
(E)-1-Cyclopropylhept-2-en-1-one 9b.-As described above, starting from the ketol $\mathbf{2 b}$ ( 0.7 g ) and TsOH monohydrate ( 25 mg ) in benzene ( $35 \mathrm{~cm}^{3}$ ), the title product $9 \mathbf{b}^{4}(0.57 \mathrm{~g}, 91 \%)$ was obtained as a liquid, b.p. $75-76^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4747$; $\delta_{\mathrm{H}} 0.8-1.2\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.92(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me}), 1.3-1.5\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.24(2 \mathrm{H}, \mathrm{br} \mathrm{q}$, $\left.J 7,4-\mathrm{H}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{dt}, J 16$ and $1.5,2-\mathrm{H})$ and $6.91(1 \mathrm{H}, \mathrm{dt}$, $J 16$ and $7,3-\mathrm{H}$ ).
(E)-1-Cyclopropylnon-2-en-1-one 9c.-In the same way, starting from the ketol $2 \mathrm{c}(2.75 \mathrm{~g})$, the unsaturated ketone $9 \mathrm{c}^{4}$ $(2.27 \mathrm{~g}, 91 \%)$ was obtained as a liquid, b.p. $100-101^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4741 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.5\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 2.23\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,4-\mathrm{H}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{dt}, J 16$ and $1.5,2-\mathrm{H})$ and $6.91(1 \mathrm{H}, \mathrm{dt}, J 16$ and $7,3-\mathrm{H})$.
(E)-1-Cyclopropylundec-2-en-1-one 9d.-As above, starting from the hydroxy ketone $2 \mathrm{~d}(0.7 \mathrm{~g})$, the title compound $9 \mathrm{~d}^{4}$ $(0.59 \mathrm{~g}, 92 \%)$ was obtained as a liquid, b.p. $89-90^{\circ} \mathrm{C}$ at 0.03 $\mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4733 ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.5\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.13(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 2.24\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,4-\mathrm{H}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{dt}, J 16$ and 1.5 , $2-\mathrm{H}$ ) and 6.91 ( $1 \mathrm{H}, \mathrm{dt}, J 16$ and $7,3-\mathrm{H}$ ).
(2E,7Z)-1-Cyclopropyldodeca-2,7-dien-1-one 9e.-Similarly, starting from the ketol $2 \mathrm{e}(1.48 \mathrm{~g})$, the title unsaturated ketone $9 \mathrm{e}(1.33 \mathrm{~g}, 97 \%)$ was obtained as a liquid, b.p. $133-135^{\circ} \mathrm{C}$ at $0.03 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4865$ (Found: C, $81.5 ; \mathrm{H}, 11.1 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$ requires C, $81.76 ; \mathrm{H}, 10.98 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 685,890,975,1060$, $1190,1235,1280,1390,1440,1625,1660,1680,2960,3000$ and 3095; $\lambda_{\text {max }} / \mathrm{nm} 228(\varepsilon 18200) ; \delta_{\mathrm{H}} 0.8-1.1\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.4(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{and}$ $\left.11-\mathrm{H}_{2}\right), 1.55\left(2 \mathrm{H}\right.$, quint, $\left.J 7,5-\mathrm{H}_{2}\right), 1.9-2.3(7 \mathrm{H}, \mathrm{m}, \mathrm{CH}, 4-$, 6 - and $9-\mathrm{H}_{2}$ ), $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 6.23(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 16$, $2-\mathrm{H})$ and $6.92(1 \mathrm{H}, \mathrm{dt}, J 16$ and $7,3-\mathrm{H}) ; m / z 220\left(\mathrm{M}^{+}, 2 \%\right), 177$ (7), 163 (10), 152 (12), 136 (44), 123 (42), 95 (65), 81 (69), 69 (61), 67 (61), 55 (100), 43 (37) and 41 (28).
(Z)-1-(Tetrahydropyran-2-yloxy)tridec-8-ene 13a.-To a stirred solution of the sulphone $\mathbf{1 0}^{43}(1.8 \mathrm{~g}, 8.5 \mathrm{mmol})$ in THF ( $30 \mathrm{~cm}^{3}$ )-HMPA $\left(2 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$ under argon was added dropwise a solution of butyllithium ( $1.81 \mathrm{~mol} \mathrm{dm}^{-3} ; 4.7 \mathrm{~cm}^{3}$, 8.51 mmol ) in hexane. The mixture was warmed for 5 min at $-15^{\circ} \mathrm{C}$, kept at this temperature for 25 min , and then treated at $-70^{\circ} \mathrm{C}$ with a solution of 8 -(tetrahydropyran-2-yloxy)octanal ${ }^{44}(1.94 \mathrm{~g}, 8.51 \mathrm{mmol})$ in THF ( $10 \mathrm{~cm}^{3}$ ) during 5 min . The reaction mixture was warmed during 5 min to $-10^{\circ} \mathrm{C}$, stirred at this temperature for 25 min , and then treated dropwise with a solution of DMAP $(0.1 \mathrm{~g}, 0.82 \mathrm{mmol})$ in acetic anhydride $(1.3 \mathrm{~g}, 12.74 \mathrm{mmol})$. The mixture was then warmed during 50 $\min$ to $25^{\circ} \mathrm{C}$, poured into water ( $50 \mathrm{~cm}^{3}$ ), and extracted with diethyl ether ( $4 \times 35 \mathrm{~cm}^{3}$ ). The extract was washed with brine $\left(2 \times 30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated.
A solution of the residue ( 4.4 g ) in diethyl ether ( $60 \mathrm{~cm}^{3}$ )methanol ( $0.6 \mathrm{~cm}^{3}$ ) was vigorously stirred at $25^{\circ} \mathrm{C}$ with freshly ground sodium hydroxide ( $0.68 \mathrm{~g}, 17.0 \mathrm{mmol}$ ) for 20 min . The suspension was then passed through a short pad of silica gel and the filtrate was evaporated.
A mixture of the residue ( 3.4 g ), sodium dithionite $(4.44 \mathrm{~g}$, $25.52 \mathrm{mmol})$, sodium hydrogen carbonate ( $4.29 \mathrm{~g}, 51.07 \mathrm{mmol}$ ), ethanol ( $50 \mathrm{~cm}^{3}$ ), and water ( $50 \mathrm{~cm}^{3}$ ) was vigorously stirred at 80 C for 7 h , then extracted with diethyl ether ( $4 \times 50 \mathrm{~cm}^{3}$ ).

The extract was washed successively with water ( $2 \times 25 \mathrm{~cm}^{3}$ ) and brine ( $2 \times 25 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, then evaporated, and the residue ( 2.5 g ) was chromatographed on silica gel ( 70 g ) in hexane-diethyl ether (95:5) to yield the olefin $13 \mathrm{a}\left(1.44 \mathrm{~g}, 60^{\circ}{ }_{\mathrm{o}}\right.$ ) as an oil, $n_{\mathrm{D}}^{24} 1.4589$ (Found: $\mathrm{C}, 76.1 ; \mathrm{H}, 12.1, \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$ requires C, $76.54 ; \mathrm{H}, 12.13 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 790,905,970,1075,1135$, 1255, 1350, 1450, 2915 and $3000 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, 1.2-1.9 ( $20 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 1.9-2.1 ( $4 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 10-\mathrm{H}_{2}$ ), 3.3-3.9 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.58(1 \mathrm{H}, \mathrm{brt}, J 4, \mathrm{OCHO})$ and $5.25-5.45$ ( $2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}$ ); $m /=209(2 \%$ ), $180(2), 178$ (2), 97 (11), 96 (13), 95 (9), 85 (100), 84 (10), 82 (13), 81 (14), 69 (25), 67 (25), 55 (45), 43 (23) and 41 (37).
(Z)-1-(Tetrahydropyran-2-yloxy)dec-5-ene 13b.--In the same way a solution of the sulphone $10(8.5 \mathrm{~g}, 40.1 \mathrm{mmol})$ in THF ( $50 \mathrm{~cm}^{3}$ )-HMPA $\left(5 \mathrm{~cm}^{3}\right.$ ) was treated with butyllithium ( 1.8 $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 22.2 \mathrm{~cm}^{3}, 40.0 \mathrm{mmol}$ ) in hexane, followed by $5-$ (tetrahydropyran-2-yloxy)pentanal ${ }^{45}$ ( $7.25 \mathrm{~g}, 39.0 \mathrm{mmol}$ ) in THF ( $20 \mathrm{~cm}^{3}$ ) to give, after treatment of the reaction mixture with acetic anhydride $(5.96 \mathrm{~g}, 58.4 \mathrm{mmol})$ and DMAP $(0.48 \mathrm{~g}$, $3.9 \mathrm{mmol})$, the crude product $(21.0 \mathrm{~g})$, which was treated further with sodium hydroxide ( $3.12 \mathrm{~g}, 78.0 \mathrm{mmol}$ ) in diethyl ether ( 100 $\mathrm{cm}^{3}$ ) containing methanol ( $1 \mathrm{~cm}^{3}$ ). The resulting mixture ( 15 g ) was then treated with sodium dithionite ( $20.35 \mathrm{~g}, 117 \mathrm{mmol}$ ) and sodium hydrogen carbonate ( $19.65 \mathrm{~g}, 234 \mathrm{mmol}$ ) in aq. ethanol ( $1: 1 ; 400 \mathrm{~cm}^{3}$ ) and the final crude product ( 9.51 g ) was chromatographed on silica gel ( 200 g ) to afford the title olefin 13b $(5.23 \mathrm{~g}, 56 \%)$ as an oil; $n_{\mathrm{D}}^{22} 1.4581$ (Found: C, 74.7; H, 11.5 . $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$ requires C, $74.95 ; \mathrm{H}, 11.74 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 795,905$, $970,1075,1135,1255,1350,1440,2920$ and $3000 ; \delta_{\mathrm{H}} 0.90$ ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), 1.2-1.9 ( $14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 1.9-2.1 ( $4 \mathrm{H}, \mathrm{m}, 4-$ and 7-H2 $), 3.3-3.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.58(1 \mathrm{H}, \mathrm{brt}, J 4, \mathrm{OCHO})$ and 5.35-5.45 ( $2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H}$ ); $m /=167(2 \%), 138(3), 136$ (6), 97 (15), 95 (17), 85 (100), 84 (28), 83 (31), 81 (25), 69 (45), 67 (59), 57 (54), 55 (100), 45 (86), 43 (59) and 41 (27).
(Z)-Tridec-8-en-1-ol $\mathbf{1 4 a}$.-A solution of the ether $13 \mathrm{a}(3.36 \mathrm{~g}$, $1.91 \mathrm{mmol})$ and PPTS $^{46}(0.3 \mathrm{~g}, 1.2 \mathrm{mmol})$ in methanol $\left(50 \mathrm{~cm}^{3}\right)$ was kept at $50^{\circ} \mathrm{C}$ for 2 h , then evaporated, and the residue $(3 \mathrm{~g})$ was chromatographed on silica gel ( 60 g ) in hexanediethyl ether (93:7) to give the alcohol $14 \mathbf{a}^{47}(2.36 \mathrm{~g}, \sim 100 \%)$ as a liquid, b.p. $90-91{ }^{\circ} \mathrm{C}$ at $0.02 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4539 ; \delta_{\mathrm{H}} 0.90$ ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), 1.2-1.6 ( $14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 1.9-2.1 ( $4 \mathrm{H}, \mathrm{m}, 7$ - and $10-$ $\left.\mathrm{H}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.25-5.45(2 \mathrm{H}, \mathrm{m}, 8$-and $9-\mathrm{H}) ; \delta_{\mathrm{C}}$ 13.92 (C-13), 22.29 (C-12), 25.67 (C-3), 26.87 and 27.11 (C-7 and $-10), 29.27$ and 29.64 (C-4, -5 and -6), 31.92 (C-11), 32.73 (C-2), 62.99 (C-1) and 129.79 and 129.94 (C-8 and -9).
(Z)-Dec-5-en-1-ol 14b.--Similarly, starting from the ether 13b ( $2.46 \mathrm{~g}, 10.25 \mathrm{mmol}$ ) and PPTS ( $0.26 \mathrm{~g}, 1.04 \mathrm{mmol}$ ) in methanol ( $40 \mathrm{~cm}^{3}$ ), the title compound $14 \mathrm{~b}^{48}(1.6 \mathrm{~g}, \sim 100 \%$ ) was obtained as a liquid, b.p. $91-92{ }^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4515$; $\delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1(4 \mathrm{H}$, $\left.\mathrm{m}, 4-\mathrm{and} 7-\mathrm{H}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H})$; $\delta_{\mathrm{C}} 13.86(\mathrm{C}-10), 22.26(\mathrm{C}-9), 25.65(\mathrm{C}-3), 26.87$ (C-4 and -7), 31.86 (C-8), 32.23 (C-2), 62.47 (C-1) and 129.37 and 130.22 (C-5 and -6).
(Z)-Tridec-8-enyl Bromide $\mathbf{1 5}$.--To a stirred solution of the alcohol $14 \mathrm{a}(1.93 \mathrm{~g}, 9.75 \mathrm{mmol})$ in diethyl ether $\left(40 \mathrm{~cm}^{3}\right)$ HMPA ( $3 \mathrm{~cm}^{3}$ ) at -30 ( C under argon was added dropwise a solution of butyllithium ( $1.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 6.55 \mathrm{~cm}^{3}, 9.83 \mathrm{mmol}$ ) in hexane, and then $\operatorname{TsCl}(2.0 \mathrm{~g}, 10.5 \mathrm{mmol})$ was added during 5 min . The reaction mixture was warmed during 15 min to 25 C and was then diluted with water ( $30 \mathrm{~cm}^{3}$ ). The aq. phase was separated and extracted with diethyl ether ( $3 \times 20 \mathrm{~cm}^{3}$ ). The combined organic layers were washed with brine ( $3 \times 15$ $\mathrm{cm}^{3}$ ), dried ( $\mathrm{MgSO}_{4}$ ), and evaporated.

A solution of the residue ( 3.5 g ) in dimethylformamide (DMF) ( $40 \mathrm{~cm}^{3}$ ) was vigorously stirred at $50^{\circ} \mathrm{C}$ with sodium bromide ( $4.0 \mathrm{~g}, 38.8 \mathrm{mmol}$ ) for 1 h . The reaction mixture was then diluted with water ( $30 \mathrm{~cm}^{3}$ ) and extracted with hexane $\left(4 \times 40 \mathrm{~cm}^{3}\right)$. The extract was washed with brine $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and concentrated under reduced pressure, and the residue was distilled to give the bromide $15(2.43 \mathrm{~g}, 96 \%)$ as a liquid, b.p. $92-93{ }^{\circ} \mathrm{C}$ at $0.02 \mathrm{mmHg} ; n_{\mathrm{D}}^{22} 1.4702$ (Found: $\mathrm{C}, 60.1$; $\mathrm{H}, 9.7 ; \mathrm{Br}, 30.2 . \mathrm{C}_{13} \mathrm{H}_{25} \mathrm{Br}$ requires $\mathrm{C}, 59.77 ; \mathrm{H}, 9.65 ; \mathrm{Br}$, $30.58 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 560,645,710,970,1245,1375,1435,1460$ and $2930 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.5\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, $1.86\left(2 \mathrm{H}\right.$, quint, $\left.J 7,2-\mathrm{H}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 7-\right.$ and $\left.10-\mathrm{H}_{2}\right), 3.41$ $\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.30-5.45(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}) ; m / z 262$ $\left(\mathrm{M}^{+}, 32 \%\right), 260\left(\mathrm{M}^{+}, 30\right), 150(40), 148$ (40), 97 (74), 83 (74), $70(94), 69(98), 67(100), 56(55)$ and 41 (68).
(Z)-Dec-5-enal 16.--To a stirred solution of oxalyl dichloride $(2.57 \mathrm{~g}, 20.24 \mathrm{mmol})$ in methylene dichloride $\left(35 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$ under argon was added dropwise a solution of dimethyl sulphoxide ( $2.33 \mathrm{~g}, 29.87 \mathrm{mmol}$ ) in methylene dichloride $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was kept at this temperature for 10 min and was then treated with a solution of the alcohol $14 \mathrm{~b}(1.37 \mathrm{~g}$, 8.78 mmol ) in methylene dichloride ( $40 \mathrm{~cm}^{3}$ ) during 10 min . The reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 40 min , then treated with triethylamine ( $7.14 \mathrm{~g}, 70.69 \mathrm{mmol}$ ) for 10 min , and warmed during 15 min to $-15^{\circ} \mathrm{C}$. After an additional 45 min the mixture was quenched with hydrochloric acid ( $1 \mathrm{~mol} \mathrm{dm}^{-3}$; $30.2 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether $\left(3 \times 30 \mathrm{~cm}^{3}\right)$. The extracts were washed successively with water $\left(3 \times 15 \mathrm{~cm}^{3}\right)$, saturated aq. sodium hydrogen carbonate ( $2 \times 15 \mathrm{~cm}^{3}$ ), and brine $\left(2 \times 15 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue ( 2.0 g ) was chromatographed on silica gel ( 40 g ) in hexane-diethyl ether $(99: 1)$ to yield the title aldehyde $\mathbf{1 6}^{49}$ $\left(1.3 \mathrm{~g}, 96 \%\right.$ ) as a liquid, b.p. $51-52{ }^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4442$; $\delta_{\mathrm{H}} 0.90\left(3 \mathrm{H}, \mathrm{t}, J 7\right.$, Me), 1.2-1.4 (4 H, m, 8- and $\left.9-\mathrm{H}_{2}\right), 1.70$ ( 2 H , quint, $J 7,3-\mathrm{H}_{2}$ ), 1.9-2.1 ( $4 \mathrm{H}, \mathrm{m}, 4-$ and $\left.7-\mathrm{H}_{2}\right), 2.45(2 \mathrm{H}$, td, $J 7$ and $\left.2,2-\mathrm{H}_{2}\right), 5.25-5.50(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H})$ and 9.77 $(1 \mathrm{H}, \mathrm{t}, J 2,1-\mathrm{H})$.

1-Cyclopropylpropan-1-ol 17a.--To a stirred solution of the ketone $7 \mathrm{a}(3.87 \mathrm{~g}, 39.5 \mathrm{mmol})$ in diethyl ether $\left(50 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon was added lithium aluminium hydride ( $1.5 \mathrm{~g}, 39.5$ mmol ) during 10 min . The reaction mixture was stirred for a further 10 min and then was treated, at $0^{\circ} \mathrm{C}$, successively with water ( $1.5 \mathrm{~cm}^{3}$ ), aq. potassium hydroxide ( $3 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.5 \mathrm{~cm}^{3}$ ), and water $\left(4.5 \mathrm{~cm}^{3}\right)$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solid thus formed was filtered off and washed with dry diethyl ether $\left(70 \mathrm{~cm}^{3}\right)$. The filtrate was concentrated at atmospheric pressure and the residue was then distilled to afford the alcohol $17 \mathrm{a}^{9}(3.53 \mathrm{~g}$, $89 \%$ ) as a liquid, b.p. $132-133{ }^{\circ} \mathrm{C} ; n_{\mathrm{D}}^{20} 1.4365 ; \delta_{\mathrm{H}} 0.2-0.6$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.8-1.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.99$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.5-1.7\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}_{2}\right)$ and $2.80(1 \mathrm{H}$, br q , J7, 1-H).

1-Cyclopropylpentan-1-ol 17b.--In the same way, starting from the ketone $7 \mathbf{b}(3.61 \mathrm{~g}, 28.65 \mathrm{mmol})$ and lithium aluminium hydride ( $1.09 \mathrm{~g}, 28.7 \mathrm{mmol}$ ) in diethyl ether ( $50 \mathrm{~cm}^{3}$ ), after concentration of the final filtrate under reduced pressure the title compound $17 \mathbf{b}^{4}(3.43 \mathrm{~g}, 94 \%)$ was obtained as a liquid, b.p. $82-83{ }^{\circ} \mathrm{C}$ at $17 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4400 ; \delta_{\mathrm{H}} 0.2-0.6(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}$ of cyclopropane), $0.8-1.0(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 0.91(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{Me}), 1.2-1.7\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$ and $2.84(1 \mathrm{H}$, br q, $J 7,1-\mathrm{H})$.
(Z)-1-Cyclopropylpentadec-10-en-1-ol 17f.--Similarly, starting from the ketone $7 \mathrm{f}(1.71 \mathrm{~g}, 6.48 \mathrm{mmol})$ and lithium aluminium hydride $(0.24 \mathrm{~g}, 6.3 \mathrm{mmol})$ in diethyl ether $\left(25 \mathrm{~cm}^{3}\right)$, the title alcohol $17 \mathrm{f}(1.69 \mathrm{~g}, 98 \%)$ was obtained as an oil; $n_{\mathrm{D}}^{22}$ 1.4661 (Found: $\mathrm{C}, 81.5 ; \mathrm{H}, 12.8 . \mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}$ requires $\mathrm{C}, 81.13$;
$\mathrm{H}, 12.86 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 725,825,920,1050,1205,1380,1460$, 2930,3080 and $3600 ; \delta_{\mathrm{H}} 0.2-0.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.8-1.0(4 \mathrm{H}, \mathrm{m}, \mathrm{Me}, \mathrm{CH}), 1.2-1.7\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.9-2.1 (4 H, m, 9- and 12-H2), $2.86(1 \mathrm{H}$, br q, $J 7,1-\mathrm{H})$ and $5.30-5.45(2 \mathrm{H}, \mathrm{m}, 10-$ and $11-\mathrm{H}) ; m /=248\left(\mathrm{M}^{+}-18,6 \%\right)$, $204(6), 121(6), 81(14), 71(100), 55(33), 43(38)$ and 41 (41).
(E)-1-Hex-3-enyl Bromide 18a-To a vigorously stirred suspension of the alcohol $17 \mathbf{a}(1.2 \mathrm{~g}, 12.0 \mathrm{mmol})$ and zinc bromide ( $0.59 \mathrm{~g}, 2.6 \mathrm{mmol}$ ) in methylene dichloride $\left(20 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ under argon was added dropwise a solution of trimethylsilyl bromide ( $4.04 \mathrm{~g}, 26.4 \mathrm{mmol}$ ) in methylene dichloride $\left(5 \mathrm{~cm}^{3}\right)$. The reaction mixture was warmed during 10 min to $0^{\circ} \mathrm{C}$, kept at this temperature for 20 min (GLC monitoring), and then was quenched with saturated aq. sodium hydrogen carbonate ( $15 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether $\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine $\left(3 \times 15 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated at atmospheric pressure, and the residue was distilled to give the bromide $18 \mathbf{a}^{50}(1.57 \mathrm{~g}, 80 \%)$ as a liquid, b.p. $89-90^{\circ} \mathrm{C}$ at $110 \mathrm{mmHg} ; n_{\mathrm{D}}^{22}$ $1.4679 ; \delta_{\mathrm{H}} 1.00(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 2.04\left(2 \mathrm{H}\right.$, br quint, $\left.J 7,5-\mathrm{H}_{2}\right)$, $2.55\left(2 \mathrm{H}, \mathrm{br} q, J 7,2-\mathrm{H}_{2}\right), 3.38\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.38(1 \mathrm{H}, \mathrm{br} \mathrm{dt}$, $J 15$ and $7,3-\mathrm{H})$ and $5.59(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,4-\mathrm{H})$.
(E)-1-Oct-3-enyl Bromide 18b.--In the same way, starting from the alcohol $17 \mathrm{~b}(3.43 \mathrm{~g}, 26.7 \mathrm{mmol})$, zinc bromide $(1.33 \mathrm{~g}$, 5.9 mmol ), and trimethylsilyl bromide ( $9.02 \mathrm{~g}, 59.0 \mathrm{mmol}$ ) in methylene dichloride $\left(100 \mathrm{~cm}^{3}\right)$, the title compound $\mathbf{1 8 b}^{4}$ $(4.61 \mathrm{~g}, 90 \%)$ was obtained as a liquid, b.p. $85-86 \mathrm{C}$ at 16 $\mathrm{mmHg} ; n_{\mathrm{D}}^{20} 1.4695 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.4(4 \mathrm{H}$, $\left.\mathrm{m}, 6-\mathrm{and} 7-\mathrm{H}_{2}\right), 2.03\left(2 \mathrm{H}\right.$, br q, $\left.J 7,5-\mathrm{H}_{2}\right), 2.55(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7$, $\left.2-\mathrm{H}_{2}\right), 3.38\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.39(1 \mathrm{H}$, br dt. $J 15$ and 7 , $3-\mathrm{H})$ and $5.56(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,4-\mathrm{H})$.
(3E,13Z)-Octadeca-3,13-dienyl Bromide 18f.--Similarly, starting from the alcohol $17 \mathrm{f}(1.59 \mathrm{~g}, 5.98 \mathrm{mmol})$, trimethylsilyl bromide $(2.01 \mathrm{~g}, 13.14 \mathrm{mmol})$, and zinc bromide $(0.3 \mathrm{~g}, 1.33$ mmol ) in methylene dichloride ( $35 \mathrm{~cm}^{3}$ ), a crude product ( 2 g ) was obtained, which was chromatographed on silica gel ( 30 g ) in pentane to give the title bromide $\mathbf{1 8 f}(1.95 \mathrm{~g}, \sim 100 \%)$ as an oil; $n_{\mathrm{D}}^{22} 1.4790$ (Found: C, 65.45; H, 10.4; Br, 24.6. $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{Br}$ requires $\mathrm{C}, 65.64 ; \mathrm{H}, 10.10 ; \mathrm{Br}, 24.26 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 565,645$, $670,730,880,970,1050,1255,1380,1460$ and $2930 ; \delta_{\mathrm{H}} 0.90$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.4\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1(6 \mathrm{H}, \mathrm{m}, 5-$, $12-$ and $\left.15-\mathrm{H}_{2}\right), 2.55\left(2 \mathrm{H}\right.$, br q, $\left.J 7,2-\mathrm{H}_{2}\right), 3.37(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.1-\mathrm{H}_{2}\right), 5.30-5.45(3 \mathrm{H}, \mathrm{m}, 3-, 13-$ and $14-\mathrm{H})$ and $5.55(1 \mathrm{H}$, br $\mathrm{dt}, J 15$ and $7,4-\mathrm{H}) ; m /=330\left(\mathrm{M}^{+}, 41 \%\right), 328\left(\mathrm{M}^{+}, 38\right), 191$ (23), 160 (25), 107 (36), 94 (58), 81 (66), $80(66), 79$ (83), 65 (83), 55 (100) and 41 (62).
(E)-Dodec-9-en-1-ol 19.---To vigorously stirred, preactivated magnesium powder ( $1.29 \mathrm{~g}, 53.7 \mathrm{mmol}$ ) was added a solution of the $O$-magnesium derivative [from 6-bromohexan-1-ol ${ }^{51}$ $(3.89 \mathrm{~g}, 21.5 \mathrm{mmol})$ and ethylmagnesium bromide in THF ( 1.5 $\left.\mathrm{mol} \mathrm{dm}{ }^{-3} ; 15.7 \mathrm{~cm}^{3}, 23.6 \mathrm{mmol}\right)$ ] in THF $\left(15 \mathrm{~cm}^{3}\right)$ under argon during ca. 20 min ; the temperature was raised to $45-50^{\circ} \mathrm{C}$ to initiate and maintain the reaction. The mixture was then cooled to $25^{\circ} \mathrm{C}$ and filtered. The filtrate, cooled to $-70^{\circ} \mathrm{C}$, was treated successively with HMPA $\left(8 \mathrm{~cm}^{3}\right)$, a solution of the bromide $18 \mathrm{a}(0.7 \mathrm{~g}, 4.3 \mathrm{mmol})$ in THF $\left(12 \mathrm{~cm}^{3}\right)$, and a solution of dilithium tetrachlorocuprate ${ }^{14}$ in THF $\left(0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 7 \mathrm{~cm}^{3}\right.$, 0.7 mmol ) during 5 min . The reaction mixture was warmed during 1 h to 0 C , then quenched with saturated aq. copper(i1) sulphate $\left(30 \mathrm{~cm}^{3}\right)$, and extracted into diethyl ether $(3 \times 25$ $\mathrm{cm}^{3}$ ). The organic extracts were washed with brine $(2 \times 15$ $\mathrm{cm}^{3}$ ), dried ( $\mathrm{MgSO}_{4}$ ), evaporated, and distilled to afford the olefin $19^{52}(0.45 \mathrm{~g}, 57 \%)$ as a liquid, b.p. $81-82^{\circ} \mathrm{C}$ at 0.03 $\mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4534 ; \delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.6(12 \mathrm{H}$,
$\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 11-\mathrm{H}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 10-\mathrm{H})$.
(E)-Tetradec-11-en-1-ol 20.-In the same way, starting from 8 -bromooctan-1-ol ${ }^{51}(4.49 \mathrm{~g}, 21.5 \mathrm{mmol})$ in THF $\left(15 \mathrm{~cm}^{3}\right)$, ethylmagnesium bromide in THF ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 15.8 \mathrm{~cm}^{3}, 23.7$ $\mathrm{mmol})$, magnesium powder ( $1.29 \mathrm{~g}, 53.7 \mathrm{mmol}$ ), the bromide 18a ( $0.7 \mathrm{~g}, 4.3 \mathrm{mmol}$ ) in THF ( $10 \mathrm{~cm}^{3}$ )-HMPA $\left(8 \mathrm{~cm}^{3}\right)$, and dilithium tetrachlorocuprate in THF ( $0.1 \mathrm{~mol} \mathrm{dm}^{-3} ; 7 \mathrm{~cm}^{3}, 0.7$ $\mathrm{mmol})$, the title alcohol $20{ }^{52.53}(0.66 \mathrm{~g}, 73 \%)$ was obtained as a liquid, b.p. $93-94^{\circ} \mathrm{C}$ at $0.03 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4554 ; \delta_{\mathrm{H}} 0.98$ ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), 1.2-1.7 (16 H, m, $\mathrm{CH}_{2}$ ), 1.9-2.1 ( $4 \mathrm{H}, 10-\mathrm{and}$ $\left.13-\mathrm{H}_{2}\right), 3.65\left(2 \mathrm{H}, \mathrm{t}, J, 1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 11-$ and $12-\mathrm{H}$ ).
(E)-Tridec-8-en-1-ol 21.--Similarly, starting from 5-bromo-pentan-1-ol ${ }^{51}(2.27 \mathrm{~g}, 13.6 \mathrm{mmol})$ in THF $\left(9 \mathrm{~cm}^{3}\right)$, ethylmagnesium bromide in THF ( $1.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 10 \mathrm{~cm}^{3}, 15 \mathrm{mmol}$ ), magnesium powder $(0.82 \mathrm{~g}, 34.2 \mathrm{mmol})$, the bromide $\mathbf{1 8 b}$ ( $0.52 \mathrm{~g}, 2.7 \mathrm{mmol}$ ) in THF ( $7 \mathrm{~cm}^{3}$ )-HMPA ( $5 \mathrm{~cm}^{3}$ ), and dilithium tetrachlorocuprate in THF ( $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 4 \mathrm{~cm}^{3}, 0.4$ $\mathrm{mmol})$, the title compound $21(0.36 \mathrm{~g}, 67 \%)$ was obtained as a liquid, b.p. $110-111^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4539$ (Found: C , $78.95 ; \mathrm{H}, 13.2 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 78.72 ; \mathrm{H}, 13.21 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 925,980,1060,1245,1385,1470,2970,3020$ and 3630; $\delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.6\left(14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1$ ( $4 \mathrm{H}, \mathrm{m}, 7-$ and $10-\mathrm{H}_{2}$ ), $3.64\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.32(1 \mathrm{H}, \mathrm{br} \mathrm{dt}$, $J 15$ and $5.5,8-\mathrm{H})$ and $5.43(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $5.5,9-\mathrm{H}) ; m / z$ $180\left(\mathrm{M}^{+}-18,6 \%\right), 124$ (8), 123 (7), 109 (15), 96 (37), 95 (39), $82(57), 81(61), 69(37), 67(69), 55(100)$ and $41(59)$.
(E)-Dodec-9-enyl Acetate 22.--A solution of the alcohol 19 $(0.2 \mathrm{~g}, 1.09 \mathrm{mmol})$ and DMAP $(10 \mathrm{mg})$ in acetic anhydride $(0.22$ $\mathrm{g}, 2.16 \mathrm{mmol})$-pyridine $\left(1 \mathrm{~cm}^{3}\right)$ was kept at $25^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then treated at $0^{\circ} \mathrm{C}$ with hydrochloric acid ( $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 12.5 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extracts were washed successively with saturated aq. sodium hydrogen carbonate ( $3 \mathrm{~cm}^{3}$ ) and brine ( $3 \times 5 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated, and the residue was distilled to yield the acetate $22^{52}(0.24 \mathrm{~g}, 98 \%)$ as a liquid, b.p. $57-58{ }^{\circ} \mathrm{C}$ at $0.01 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4443 ; \delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{t}$, $J 7, \mathrm{Me}), 1.2-1.7\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 11-\mathrm{H}_{2}\right)$, $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}$, $\mathrm{m}, 9-$ and $10-\mathrm{H})$.
(E)-Tetradec-11-enyl Acetate 23.-In the same way, starting from the alcohol $20(0.2 \mathrm{~g}, 0.94 \mathrm{mmol})$, acetic anhydride $(0.19 \mathrm{~g}$, $1.86 \mathrm{mmol})$, DMAP $(10 \mathrm{mg})$, and pyridine $\left(1 \mathrm{~cm}^{3}\right)$, the title acetate $23^{52.53}(0.21 \mathrm{~g}, 88 \%)$ was obtained as a liquid, b.p. $85-86^{\circ} \mathrm{C}$ at $0.04 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4458 ; \delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{t}, J 7$, Me), $1.2-1.7\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 10-\right.$ and $\left.13-\mathrm{H}_{2}\right), 2.07$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}$, $11-$ and $12-\mathrm{H}$ ).
(E)-Tridec-8-enyl Acetate 24.--Similarly, starting from the alcohol $21(0.2 \mathrm{~g}, 1.0 \mathrm{mmol})$, the title compound $24(0.24 \mathrm{~g}, 99 \%$ ) was obtained as a liquid, b.p. $97-98^{\circ} \mathrm{C}$ at $0.015 \mathrm{mmHg} ; n_{\mathrm{D}}^{23}$ 1.4440 (Found: $\mathrm{C}, 75.1 ; \mathrm{H}, 11.8 . \mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 74.95$; $\mathrm{H}, 11.74 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 970,1040,1260,1390,1470,1735,2940$ and $3010 ; \delta_{\mathrm{H}} 0.89\left(3 \mathrm{H}, \mathrm{t}, J 7\right.$, Me), 1.2-1.7 ( $14 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 1.9-2.1 ( $\left.4 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 10-\mathrm{H}_{2}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.05$ $\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}) ; m /=180$ $\left(\mathrm{M}^{+}-60,23 \%\right), 124(17), 123$ (15), 96 (83), 82 (66), 81 (76), 67 (88), 55 (100), 43 (72) and 41 (47).
(E)-Tetradec-11-enal 25.-To a stirred solution of the alcohol $20(0.32 \mathrm{~g}, 1.5 \mathrm{mmol})$ in methylene dichloride ( $4 \mathrm{~cm}^{3}$ ) under argon at 25 C was added $\mathrm{PCC}^{54}(0.49 \mathrm{~g}, 2.3 \mathrm{mmol})$ in one
portion. After 2 h the mixture was diluted with diethyl ether ( $10 \mathrm{~cm}^{3}$ ) and passed through a short pad of silica gel. The filtrate was evaporated and the residue was distilled to give the aldehyde $25^{53}(0.28 \mathrm{~g}, 88 \%)$ as a liquid, b.p. $67-68{ }^{\circ} \mathrm{C}$ at 0.025 $\mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4483 ; \delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{t}, J 7$, Me) , $1.2-1.7(14 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{and} 13-\mathrm{H}_{2}\right), 2.42(2 \mathrm{H}, \mathrm{td}, J 7$ and $\left.2,2-\mathrm{H}_{2}\right), 5.3-5.5(2 \mathrm{H}, \mathrm{m}, 11-$ and $12-\mathrm{H})$ and $9.78(1 \mathrm{H}, \mathrm{t}$, $J 2,1-\mathrm{H})$.
(3E,13Z)-Octadeca-3,13-dienyl Acetate 26.--A suspension of the bromide $18 \mathrm{f}(1.05 \mathrm{~g}, 3.19 \mathrm{mmol})$, potassium acetate $(1.56 \mathrm{~g}$, 15.9 mmol ), and DB-18-C-6 ( 20 mg ) in acetonitrile ( $60 \mathrm{~cm}^{3}$ ) was refluxed for 15 h . The reaction mixture was then passed through a short pad of silica gel, the filtrate was evaporated, and the residue ( $\sim 1 \mathrm{~g}$ ) was chromatographed on silica gel $(20 \mathrm{~g})$ in hexane-diethyl ether $(97: 3)$ to give the acetate $\mathbf{2 6}^{55}$ $(0.87 \mathrm{~g}, 89 \%)$ as an oil, $n_{\mathrm{D}}^{23} 1.4570 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7$, Me), 1.2-1.4 ( $16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), 1.9-2.1 ( $6 \mathrm{H}, \mathrm{m}, 5-$, 12- and $15-\mathrm{H}_{2}$ ), $2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.32\left(2 \mathrm{H}\right.$, br q, $\left.J 7,2-\mathrm{H}_{2}\right), 4.07(2 \mathrm{H}, \mathrm{t}$, $\left.J 7,1-\mathrm{H}_{2}\right), 5.28-5.33(3 \mathrm{H}, \mathrm{m}, 3-13-\mathrm{and} 14-\mathrm{H})$ and $5.52(1 \mathrm{H}$, br dt, $J 15$ and 7, 4-H).
(3E,13Z)-Octadeca-3,13-dien-1-ol 27.--A solution of the acetate $26(0.45 \mathrm{~g}, 1.46 \mathrm{mmol})$ in methanol $\left(4 \mathrm{~cm}^{3}\right)$ was stirred with aq. sodium hydroxide ( $1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3 \mathrm{~cm}^{3}$ ) at $25^{\circ} \mathrm{C}$ for 15 min . The reaction mixture was then concentrated under reduced pressure and extracted with diethyl ether ( $4 \times 10 \mathrm{~cm}^{3}$ ). The extract was washed with brine $\left(2 \times 5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to afford the alcohol $27^{55}(0.39 \mathrm{~g}$, $\sim 100 \%)$ as an oil; $n_{\mathrm{D}}^{23} 1.4670 ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7$, Me $), 1.2-$ $1.4\left(16 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1(6 \mathrm{H}, \mathrm{m}, 5-, 12-\mathrm{and} 15-\mathrm{H}), 2.27$ $\left(2 \mathrm{H}\right.$, br q, $\left.J 7,2-\mathrm{H}_{2}\right), 3.62\left(2 \mathrm{H}\right.$, br t, $\left.J 7,1-\mathrm{H}_{2}\right), 5.30-5.45(3 \mathrm{H}$, $\mathrm{m}, 3-, 13$ - and $14-\mathrm{H})$ and $5.56(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,4-\mathrm{H})$.
(E)-1-Cyclopropylpent-2-en-1-ol 28a.-To a stirred solution of the ketone $9 \mathbf{a}(2.05 \mathrm{~g}, 16.5 \mathrm{mmol})$ in methanol $\left(45 \mathrm{~cm}^{3}\right)$ at $-50^{\circ} \mathrm{C}$ under argon was added cerium trichloride heptahydrate $(6.15 \mathrm{~g}, 16.5 \mathrm{mmol})$, followed by sodium borohydride $(0.62$ $\mathrm{g}, 16.5 \mathrm{mmol}$ ). The reaction mixture was kept at $-50^{\circ} \mathrm{C}$ for 15 $\min$ and then was diluted with water ( $30 \mathrm{~cm}^{3}$ ) and extracted with hexane-diethyl ether ( $1: 1 ; 4 \times 40 \mathrm{~cm}^{3}$ ). The extract was washed with brine $\left(3 \times 10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure, and the residue was distilled to give the title compound $28 \mathbf{a}^{56}(1.74 \mathrm{~g}, 84 \%)$ as a liquid, b.p. $69-70{ }^{\circ} \mathrm{C}$ at $10 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4594 ; \delta_{\mathrm{H}} 0.2-0.6$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane) $, 0.9-1.1(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \mathrm{H}), 1.00$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 2.08\left(2 \mathrm{H}\right.$, br quint, $\left.J 7,4-\mathrm{H}_{2}\right), 3.43(1 \mathrm{H}$, br t, $J 7,1-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{ddt}, J 16,7$ and $1.5,2-\mathrm{H})$ and $5.72(1 \mathrm{H}$, $\mathrm{dt}, J 16$ and $7,3-\mathrm{H})$.
(2E,7Z)-1-Cyclopropyldodeca-2,7-dien-1-ol 28e.-Similarly, starting from the ketone $9 \mathbf{e}(1.3 \mathrm{~g}, 5.9 \mathrm{mmol})$, cerium trichloride heptahydrate $(2.2 \mathrm{~g}, 5.9 \mathrm{mmol})$, and sodium borohydride $(0.22 \mathrm{~g}$, 5.8 mmol ) in methanol ( $20 \mathrm{~cm}^{3}$ ), the alcohol 28e ( $1.27 \mathrm{~g}, 97 \%$ ) was obtained as an oil; b.p. $109-110^{\circ} \mathrm{C}$ at $0.015 \mathrm{mmHg} ; n_{\mathrm{D}}^{20}$ 1.4765 (Found: $\mathrm{C}, 80.7 ; \mathrm{H}, 11.7 . \mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 81.02 ; \mathrm{H}$, $11.79 \%) ; v_{\max } / \mathrm{cm}^{-1} 690,795,920,970,1050,1235,1380,1460$, 2930, 3010,3080 and $3600 ; \delta_{\mathrm{H}} 0.2-0.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ of cyclopropane), $0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 0.9-1.1(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 1.2-$ $1.4\left(4 \mathrm{H}, \mathrm{m}, 10-\mathrm{and} 11-\mathrm{H}_{2}\right), 1.46\left(2 \mathrm{H}\right.$, quint, $\left.J 7,5-\mathrm{H}_{2}\right), 1.9-2.1$ ( $6 \mathrm{H}, \mathrm{m}, 4-, 6-$ and $\left.9-\mathrm{H}_{2}\right), 3.45(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7,1-\mathrm{H}), 5.25-5.45$ $(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{and} 8-\mathrm{H}), 5.55(1 \mathrm{H}$, ddd, $J 16,7$ and $3,2-\mathrm{H})$ and $5.66(1 \mathrm{H}$, dtd, $J 16,7$ and $3,3-\mathrm{H}) ; m /=204\left(\mathrm{M}^{+}-18,3_{\%}^{\circ}\right)$, 136 (19), 123 (21), 97 (28), 95 (46), 81 (62), 79 ( 80 ), 69 (100), 67 (80), 55 (97), 43 (73) and 41 (58).
(E,E)-Octa-3,5-dienyl Bromide 29a.-- As described above for the bromides $\mathbf{1 8}$, treatment of the alcohol $\mathbf{2 8 a}(0.4 \mathrm{~g}, 3.17 \mathrm{mmol})$
with trimethylsilyl bromide $(1.07 \mathrm{~g}, 7.0 \mathrm{mmol})$ and zinc bromide $(0.16 \mathrm{~g}, 0.7 \mathrm{mmol})$ in methylene dichloride $\left(15 \mathrm{~cm}^{3}\right)$ gave, at $-20{ }^{\circ} \mathrm{C}$ for 15 min , the title compound $29 \mathbf{a}^{56}(0.51 \mathrm{~g}, 85 \%)$ as a liquid, b.p. $54-55^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.5150 ; \delta_{\mathrm{H}} 1.02$ $(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 2.10\left(2 \mathrm{H}\right.$, br quint, $\left.J 7,7-\mathrm{H}_{2}\right), 2.63(2 \mathrm{H}, \mathrm{br}$ q, $\left.J 7,2-\mathrm{H}_{2}\right), 3.39\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.53(1 \mathrm{H}, \mathrm{dt}, J 15$ and 7 , $3-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7 \mathrm{~Hz}, 6-\mathrm{H})$ and $5.9-6.2(2 \mathrm{H}, \mathrm{m}$, $4-$ and $5-\mathrm{H}$ ).
(3E,5E,10Z)-Pentadeca-3,5,10-trienyl Bromide 29e.-Similarly, starting from the alcohol $28 \mathrm{e}(0.4 \mathrm{~g}, 1.8 \mathrm{mmol})$, trimethylsilyl bromide $(0.61 \mathrm{~g}, 4.0 \mathrm{mmol})$, and zinc bromide ( $90 \mathrm{mg}, 0.4 \mathrm{mmol}$ ) in methylene dichloride $\left(15 \mathrm{~cm}^{3}\right)$, a crude product $(0.51 \mathrm{~g})$ was obtained, which was chromatographed on silica gel $(10 \mathrm{~g})$ in pentane to give the bromide $\mathbf{2 9 e}(0.49 \mathrm{~g}, 95 \%)$ as an oil, $n_{\mathrm{D}}^{21} 1.5102$ (Found: C, 62.8; H, 8.9; Br, 28.3. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{Br}$ requires $\mathrm{C}, 63.16 ; \mathrm{H}, 8.83 ; \mathrm{Br}, 28.01 \%$; $v_{\text {max }} / \mathrm{cm}^{-1} 640,685$, $960,985,1040,1260,1370,1450,1650,2950$ and $3070 ; \lambda_{\text {max }} / \mathrm{nm}$ $233(\varepsilon 23300) ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.4(4 \mathrm{H}, \mathrm{m}$, 13- and $\left.14-\mathrm{H}_{2}\right), 1.45\left(2 \mathrm{H}\right.$, quint, $\left.J 7,8-\mathrm{H}_{2}\right), 1.9-2.2(6 \mathrm{H} \mathrm{m}, 7-$, 9- and $\left.12-\mathrm{H}_{2}\right), 2.63\left(2 \mathrm{H}\right.$, br q, $\left.J 7,2-\mathrm{H}_{2}\right), 3.40(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.1-\mathrm{H}_{2}\right), 5.25-5.45(2 \mathrm{H}, \mathrm{m}, 10-$ and $11-\mathrm{H}), 5.53(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,3-\mathrm{H}), 5.66(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,6-\mathrm{H})$ and $5.9-6.2(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}) ; m / z 286\left(\mathrm{M}^{+}, 1.5 \%\right), 284\left(\mathrm{M}^{+}, 1.2\right), 121$ (8), $107(12), 105(12), 91(27), 81(37), 79(46), 67(51), 55(63)$ and 44 (100).
(E,E)-Tetradeca-9,11-dien-1-ol 30.-As described above for the alcohol 19, starting from 6-bromohexan-1-ol $(2.25 \mathrm{~g}, 12.4$ $\mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$, ethylmagnesium bromide in THF $(1.5$ mol dm $\left.{ }^{-3} ; 9.1 \mathrm{~cm}^{3}, 13.6 \mathrm{mmol}\right)$, magnesium powder ( $0.75 \mathrm{~g}, 31.2$ $\mathrm{mmol})$, the bromide $29 \mathrm{a}(0.47 \mathrm{~g}, 2.5 \mathrm{mmol})$ in THF $\left(8 \mathrm{~cm}^{3}\right)-$ HMPA $\left(4 \mathrm{~cm}^{3}\right)$ and dilithium tetrachlorocuprate in THF $(0.1$ $\left.\mathrm{mol} \mathrm{dm}^{-3} ; 8 \mathrm{~cm}^{3}, 0.8 \mathrm{mmol}\right)$, the title alcohol $30{ }^{57}(0.3 \mathrm{~g}, 58 \%)$ was obtained as a liquid, b.p. $106-107^{\circ} \mathrm{C}$ at $0.05 \mathrm{mmHg} ; n_{\mathrm{D}}^{23}$ $1.4828 ; \delta_{\mathrm{H}} 1.00(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.0-$ $2.2\left(4 \mathrm{H}, \mathrm{m}, 8\right.$ - and $\left.13-\mathrm{H}_{2}\right), 3.64\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.5-5.7(2 \mathrm{H}$, $\mathrm{m}, 9-\mathrm{and} 12-\mathrm{H})$ and $5.9-6.1(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{and} 11-\mathrm{H})$.
(E,E)-Tetradeca-9,11-dienyl A cetate 31.-As described above for the acetate 22 , starting from the alcohol $30(0.29 \mathrm{~g}, 1.38$ mmol ), acetic anhydride ( $0.28 \mathrm{~g}, 2.75 \mathrm{mmol}$ ), DMAP ( 10 mg ), and pyridine $\left(1.5 \mathrm{~cm}^{3}\right)$, the acetate $31^{57}(0.34 \mathrm{~g}, 98 \%)$ was obtained as a liquid, b.p. $99-100^{\circ} \mathrm{C}$ at $0.03 \mathrm{mmHg} ; n_{\mathrm{D}}^{23} 1.4698$; $\delta_{\mathrm{H}} 1.00(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.7\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.0-2.2$ $\left(4 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 13-\mathrm{H}_{2}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 4.07(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.1-\mathrm{H}_{2}\right), 5.5-5.7(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{and} 12-\mathrm{H})$ and $5.9-6.1(2 \mathrm{H}, \mathrm{m}, 10-$ and $11-\mathrm{H}$ ).
(4E,6E,11Z)-Hexadeca-4,6,11-trienal 33.--A suspension of the bromide $29 \mathrm{e}(0.49 \mathrm{~g}, 1.72 \mathrm{mmol})$, potassium cyanide $(0.44 \mathrm{~g}$, 6.77 mmol ), and DB-18-C-6 ( 60 mg ) in acetonitrile ( $7 \mathrm{~cm}^{3}$ ) was refluxed for 12 h . The reaction mixture was then filtered and the filtrate was evaporated. To a stirred solution of the residue $(0.39 \mathrm{~g})$ in hexane $\left(14 \mathrm{~cm}^{3}\right)$ under argon at $-70^{\circ} \mathrm{C}$ was added dropwise a solution of DIBAL in toluene ( $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 3.5 \mathrm{~cm}^{3}$, $3.5 \mathrm{mmol})$. The reaction mixture was kept at this temperature for 40 min and then was quenched with hydrochloric acid ( $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.8 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether ( $3 \times 10$ $\mathrm{cm}^{3}$ ). The extracts were washed successively with water $(2 \times 10$ $\mathrm{cm}^{3}$ ) and brine ( $3 \times 5 \mathrm{~cm}^{3}$ ), dried ( $\mathrm{Na}_{2} \mathrm{SO}_{4}$ ), and evaporated. The residue $(0.3 \mathrm{~g})$ was chromatographed on silica gel $(10 \mathrm{~g})$ in hexane-diethyl ether ( $99: 1$ ) to yield the aldehyde $33(0.24 \mathrm{~g}$, $60 \%$ ) as an oil, $n_{D}^{20} 1.4931$ (Found: C, 81.7; H, 11.0. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}$ requires $\mathrm{C}, 81.99 ; \mathrm{H}, 11.18 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 660,695,865,975$, $1055,1260,1360,1440,1460,1580,1625,1660,1730,2940$ and 3020; $i_{\text {max }} / \mathrm{nm} 232(\varepsilon 22000) ; \delta_{\mathrm{H}} 0.90(3 \mathrm{H}, \mathrm{t}, J 7$, Me), 1.2-1.4 (4 H, m, 14- and $\left.15-\mathrm{H}_{2}\right), 1.43\left(2 \mathrm{H}\right.$, quint, $\left.J 7,9-\mathrm{H}_{2}\right)$,
1.9-2.2 $\left(6 \mathrm{H}, \mathrm{m}, 8-, 10-\right.$ and $\left.13-\mathrm{H}_{2}\right), 2.40\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,3-\mathrm{H}_{2}\right)$, $2.56\left(2 \mathrm{H}, \mathrm{td}, J 7\right.$ and $\left.2,2 \cdot \mathrm{H}_{2}\right), 5.25-5.45(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{and} 12-\mathrm{H})$, $5.55(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,4-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,7-\mathrm{H})$, 5.9-6.1 ( $2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H})$ and $9.79(1 \mathrm{H}, \mathrm{t}, J 2,1-\mathrm{H}) ; m /=$ $234\left(\mathbf{M}^{+}, 1 \%\right), 190(2), 150(24), 134$ (28), 121 (34), 119 (40), 107 (25), 95 (66), 93 (52), 91 (45), 82 (49), 81 (100), $80(48), 79$ (96), 69 (32), 67 (92), 55 (67) and 41 (70).
(4E,6E,11Z)-Hexadeca-4,6,11-trienyl Acetate 34.--To a stirred solution of the aldehyde $33(0.13 \mathrm{~g}, 0.56 \mathrm{mmol})$ in diethyl ether ( $5 \mathrm{~cm}^{3}$ ) at $0{ }^{\circ} \mathrm{C}$ under argon was added lithium aluminium hydride ( $10 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) in one portion. The reaction mixture was stirred for 15 min and was then treated at $0^{\circ} \mathrm{C}$ successively with water $\left(0.01 \mathrm{~cm}^{3}\right)$, aq. potassium hydroxide ( $3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.01 \mathrm{~cm}^{3}$ ) and water ( $0.03 \mathrm{~cm}^{3}$ ) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solid formed was filtered off and washed with dry diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ and the filtrate was evaporated. A solution of the residue $(0.13 \mathrm{~g})$ and DMAP $(10 \mathrm{mg})$ in acetic anhydride ( $0.1 \mathrm{~g}, 0.98 \mathrm{mmol}$ )-pyridine $\left(1 \mathrm{~cm}^{3}\right)$ was kept at $25^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was then treated at $0^{\circ} \mathrm{C}$ with hydrochloric acid ( $1 \mathrm{~mol} \mathrm{dm}^{-3} ; 12.5 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The extracts were washed successively with saturated aq. sodium hydrogen carbonate $\left(3 \mathrm{~cm}^{3}\right)$ and brine ( $3 \times 5 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue ( 0.15 g ) was chromatographed on silica gel ( 6 g ) in hexane-diethyl ether $(99: 1)$ to afford the acetate $\mathbf{3 4}$ $(0.14 \mathrm{~g}, 91 \%)$ as an oil, $n_{\mathrm{D}}^{20} 1.4833$ (Found: C, $78.0 ; \mathrm{H}, 10.7$. $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.65 ; \mathrm{H}, 10.86 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 635,880$, $965,1040,1255,1370,1435,1735,2940$ and $3010 ; v_{\text {max }} / \mathrm{nm} 232$ ( $\varepsilon 30500$ ); $\delta_{\mathrm{H}} 0.91(3 \mathrm{H}, \mathrm{t}, J 7$, Me), 1.2-1.4 ( $4 \mathrm{H}, \mathrm{m}, 14-$ and $15-\mathrm{H}), 1.45\left(2 \mathrm{H}\right.$, quint, $\left.J 7,9-\mathrm{H}_{2}\right), 1.74(2 \mathrm{H}$, quint, $J 7$, $\left.2-\mathrm{H}_{2}\right), 1.9-2.2\left(8 \mathrm{H}, \mathrm{m}, 3-, 8-10-\mathrm{and} 13-\mathrm{H}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 4.09\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right), 5.25-5.45(2 \mathrm{H}, \mathrm{m}, 11-\mathrm{and}$ $12-\mathrm{H}), 5.55(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,4-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{dt}, J 15$ and 7 , 7-H) and 5.9-6.1 ( $2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 278\left(\mathrm{M}^{+}, 11 \%\right), 161$ (25), 147 (26), 121 (29), 120 (28), 119 (38), 107 (31), 105 (48), 95 (35), 94 (31), 93 (54), 91 (58), 81 (61), $80(60), 79$ (100), 67 (60), 55 (51), 43 (65) and 41 (41).
(E)-7-Bromohept-4-en-1-ol 36.--To a stirred solution of the ketone $8 \mathbf{a}(1.67 \mathrm{~g}, 13.0 \mathrm{mmol})$ in diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under argon was added lithium aluminium hydride $(0.5 \mathrm{~g}, 13.2$ mmol ) during 5 min . The reaction mixture was stirred for a further 20 min and then was treated at $0^{\circ} \mathrm{C}$ successively with water $\left(0.5 \mathrm{~cm}^{3}\right)$, aq. potassium hydroxide ( $3 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.5 \mathrm{~cm}^{3}$ ), and water $\left(1.5 \mathrm{~cm}^{3}\right)$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solid that formed was filtered off and washed with dry diethyl ether ( $35 \mathrm{~cm}^{3}$ ) and the filtrate was evaporated. To a vigorously stirred suspension of the residue ( 1.58 g ) and zinc bromide ( $1.2 \mathrm{~g}, 5.3 \mathrm{mmol}$ ) in methylene dichloride $\left(30 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ was added a solution of trimethylsilyl bromide ( $6.59 \mathrm{~g}, 43.1 \mathrm{mmol}$ ) in methylene dichloride ( $10 \mathrm{~cm}^{3}$ ) during 10 min . The reaction mixture was kept at $-10^{\circ} \mathrm{C}$ for 30 min and then quenched with saturated aq. sodium hydrogen carbonate ( $20 \mathrm{~cm}^{3}$ ) and extracted with diethyl ether $\left(3 \times 25 \mathrm{~cm}^{3}\right)$. The extract was washed with brine ( $3 \times 15 \mathrm{~cm}^{3}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue $(2.35 \mathrm{~g})$ was chromatographed on silica gel $(50 \mathrm{~g})$ with gradient elution from hexane to hexane-diethyl ether $(82: 18)$ to give the title compound $36(2.29 \mathrm{~g}, 91 \%)$ as a liquid, b.p. $82-83^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{19} 1.5014$ (Found: $\mathrm{C}, 43.3 ; \mathrm{H}, 6.55 . \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{BrO}$ requires $\mathrm{C}, 43.54 ; \mathrm{H}, 6.79 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 565,645,730,920,975$, $1060,1210,1265,1390,1440,2950,3000$ and $3610 ; \delta_{\mathrm{H}} 1.66$ ( 2 H , quint, $J 7,2-\mathrm{H}_{2}$ ), $2.12\left(2 \mathrm{H}\right.$, br q, $\left.J 7,3-\mathrm{H}_{2}\right), 2.56(2 \mathrm{H}$, br q, J 7, 6-H2 $) 3.39\left(2 \mathrm{H}, \mathrm{t}, J 7,7-\mathrm{H}_{2}\right), 3.68(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.1-\mathrm{H}_{2}\right), 5.45(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,5-\mathrm{H})$ and $5.57(1 \mathrm{H}, \mathrm{dt}, J 15$ and $7,4-\mathrm{H}) ; m /=176\left(\mathrm{M}^{+}-18,9 \%\right), 174\left(\mathrm{M}^{+}-18,9\right), 120$ (10), 95 (100), 81 (52), 71 (31), 67 (58), 55 (37), 45 (36) and 41 (65).
(E)-Tridec-4-en-1-ol 37.--To a stirred solution of the Grignard reagent obtained from hexyl bromide ( $1.28 \mathrm{~g}, 7.76$ $\mathrm{mmol})$ and magnesium powder ( $0.19 \mathrm{~g}, 7.9 \mathrm{mmol}$ ) in THF $\left(5 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$ under argon were added solutions of the bromide $36(0.3 \mathrm{~g}, 1.55 \mathrm{mmol})$ in THF ( $5 \mathrm{~cm}^{3}$ ) and dilithium tetrachlorocuprate in THF ( $0.1 \mathrm{~mol} \mathrm{dm}^{-3} ; 4 \mathrm{~cm}^{3}, 0.4 \mathrm{mmol}$ ) successively during 5 min . The reaction mixture was warmed during 30 min to $25^{\circ} \mathrm{C}$, kept at this temperature for 30 min , and was then quenched with saturated aq. copper(II) sulphate ( $10 \mathrm{~cm}^{3}$ ) and extracted into diethyl ether ( $3 \times 8 \mathrm{~cm}^{3}$ ). The extracts were washed with brine ( $2 \times 7 \mathrm{~cm}^{3}$ ), dried ( $\mathrm{MgSO}_{4}$ ), and evaporated. The residue ( 0.55 g ) was chromatographed on silica gel ( 15 g ) with gradient elution from hexane to hexanediethyl ether ( $88: 12$ ) to yield the alcohol $37^{58}$ ( $305 \mathrm{mg}, 99 \%$ ) as a liquid, b.p. $106-107^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4550 ; \delta_{\mathrm{H}} 0.89$ ( $3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}$ ), 1.2-1.4 ( $12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.65(2 \mathrm{H}$, quint, $J 7$, $2-\mathrm{H}), 1.98\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,6-\mathrm{H}_{2}\right), 2.09\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,3-\mathrm{H}_{2}\right), 3.67$ $\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.35-5.55(2 \mathrm{H}, \mathrm{m}, 4-$ and $5-\mathrm{H})$.
(E)-Tridec-4-enyl Acetate 38.-As described above for the acetate 22, starting from the alcohol $37(0.16 \mathrm{~g}, 0.8 \mathrm{mmol})$, acetic anhydride ( $0.16 \mathrm{~g}, 1.6 \mathrm{mmol}$ ), DMAP ( 10 mg ), and pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$, a crude product $(0.22 \mathrm{~g})$ was obtained, which was chromatographed on silica gel ( 5 g ) with gradient elution from hexane to hexane-diethyl ether (92:8) to afford the title compound $38^{59}(0.19 \mathrm{~g}, 98 \%)$ as a liquid, b.p. $107-108^{\circ} \mathrm{C}$ at $1 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4445 ; \delta_{\mathrm{H}} 0.98(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.4(12 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.69\left(2 \mathrm{H}\right.$, quint, $\left.J 7,2-\mathrm{H}_{2}\right), 1.98\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,6-\mathrm{H}_{2}\right)$, $2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.07\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,3-\mathrm{H}_{2}\right), 4.07(2 \mathrm{H}, \mathrm{t}$, $\left.J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H})$.
(E)-(7-Tetrahydropyran-2-yloxy)hept-3-enyl Bromide 39.--A solution of the alcohol $36(1.67, \mathrm{~g}, 8.65 \mathrm{mmol})$, 3,4-dihydro- 2 H pyran ( $0.8 \mathrm{~g}, 9.5 \mathrm{mmol})$, and PPTS ( $0.17 \mathrm{~g}, 0.68 \mathrm{mmol}$ ) in methylene dichloride ( $30 \mathrm{~cm}^{3}$ ) was kept at $25^{\circ} \mathrm{C}$ for 2 h and was then evaporated, and the residue ( 2.65 g ) was chromatographed on silica gel ( 50 g ) in hexane-diethyl ether ( $97: 3$ ) to give the ether $39(2.39 \mathrm{~g}, \sim 100 \%)$ as an oil; $n_{\mathrm{D}}^{20} 1.4915$ (Found: C, 51.75; $\mathrm{H}, 7.7 ; \mathrm{Br}, 29.1 . \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 52.00 ; \mathrm{H}$, 7.64; $\mathrm{Br}, 28.82 \%$ ); $v_{\max } / \mathrm{cm}^{-1} 570,645,730,815,870,910,975$, 1030, 1080, 1130, 1200, 1260, 1305, 1440, 1465, 2940 and 3000; $\delta_{\mathrm{H}} 1.4-1.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.11\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,5-\mathrm{H}_{2}\right), 2.55$ ( $2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,2-\mathrm{H}_{2}$ ) , 3.37 ( $2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}$ ), 3.3-3.9 ( $4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 4.57(1 \mathrm{H}, \mathrm{brt}, J 4, \mathrm{OCHO}), 5.42(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,3-\mathrm{H})$ and $5.56(1 \mathrm{H}$, br dt, $J 15$ and $7,4-\mathrm{H}) ; m / z 278\left(\mathrm{M}^{+}\right.$, $0.3 \%), 276\left(\mathrm{M}^{+}, 0.3\right), 176(4), 174(4), 95(21), 85(100), 84(17)$, 67 (15), 55 (17), 45 (10), 43 (12) and 41 (19).
(E)-1-Phenylsulphonyl-7-(tetrahydropyran-2-yloxy)hept-3ene 40 .-A suspension of the bromide $39(2.35 \mathrm{~g}, 8.5 \mathrm{mmol})$ and sodium benzenesulphinate ( $2.0 \mathrm{~g}, 12.2 \mathrm{mmol}$ ) in DMF $\left(20 \mathrm{~cm}^{3}\right)$ was vigorously stirred at $60^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and extracted with diethyl ether $\left(4 \times 20 \mathrm{~cm}^{3}\right)$. The extract was washed with brine ( $2 \times 10$ $\mathrm{cm}^{3}$ ), dried ( $\mathrm{MgSO}_{4}$ ), and evaporated. The residue ( 3 g ) was chromatographed on silica gel ( 50 g ) in hexane-diethyl ether ( $97: 3$ ) to yield the sulphone $\mathbf{4 0}(2.58 \mathrm{~g}, 90 \%)$ as an oil, $n_{\mathrm{D}}^{20} 1.5250$ (Found: C, 64.2; H, 7.8; S, 9.4. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}$ requires C, $63.88 ; \mathrm{H}$, 7.74; S, $9.47 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 900,1040,1090,1155,1220,1320$, 1350, 1450, 2950 and $3020 ; i_{\text {max }} / \mathrm{nm} 217(\varepsilon 11000) ; \delta_{\mathrm{H}}$ $1.4-1.9\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.02\left(2 \mathrm{H}, \mathrm{br} \mathrm{q}, J 7,5-\mathrm{H}_{2}\right), 2.39(2 \mathrm{H}$, br q, $\left.J 7,2-\mathrm{H}_{2}\right), 3.12\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}_{2}\right), 3.3-3.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, $4.53(1 \mathrm{H} . \mathrm{brt} . J 4, \mathrm{OCHO}) .5 .32(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,3-\mathrm{H})$, $5.47(1 \mathrm{H}, \mathrm{br} \mathrm{dt}, J 15$ and $7,4-\mathrm{H})$ and $7.5-8.0(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$; $m=338\left(\mathrm{M}^{+} .1^{\circ}{ }_{0}\right), 255(11), 254$ (6), 224 (6), 143 (7), 112 (7), 95 (33). 85 (100). 57 (26), 55 (33), 46 (39), 45 (80), 43 (46) and 41 (35).
(4E,7Z)-1-(Tetrahydropyran-2-yloxy)trideca-4,7-diene 41.-As described above for the olefin 13a, a solution of the sulphone $40(1.03 \mathrm{~g}, 3.05 \mathrm{mmol})$ in THF ( $15 \mathrm{~cm}^{3}$ )-HMPA $\left(1.5 \mathrm{~cm}^{3}\right)$ was treated with butyllithium ( $1.6 \mathrm{~mol} \mathrm{dm}^{-3} ; 2.0 \mathrm{~cm}^{3}, 3.2 \mathrm{mmol}$ ) in hexane foliowed by a solution of hexanal ( $0.34 \mathrm{~g}, 3.4 \mathrm{mmol}$ ) in THF ( $7 \mathrm{cin}^{3}$ ) to give, after treatment of the reaction mixture with acetic anhydride ( $0.47 \mathrm{~g}, 4.6 \mathrm{mmol}$ ) and DMAP ( 40 mg , 0.33 mmol ), a crude product ( 1.7 g ), which was treated further with sodium hydroxide ( $0.24 \mathrm{~g}, 6.0 \mathrm{mmol}$ ) in diethyl ether ( 30 $\mathrm{cm}^{3}$ ) containing methanol $\left(0.3 \mathrm{~cm}^{3}\right)$. The resulting mixture $(1.4 \mathrm{~g})$ was then treated with sodium dithionite $(1.57 \mathrm{~g}, 9.0$ $\mathrm{mmol})$ and sodium hydrogen carbonate ( $1.51 \mathrm{~g}, 18.0 \mathrm{mmol}$ ) in aq. ethanol $\left(1: 1 ; 35 \mathrm{~cm}^{3}\right)$ and the final crude product $(0.9 \mathrm{~g})$ was chromatographed on silica gel ( 25 g ) in hexane-diethyl ether (99:1) to afford the title diene $41(0.62 \mathrm{~g}, 73 \%)$ as an oil, $n_{\mathrm{D}}^{22}$ 1.4686 (Found: C, $77.1 ; \mathrm{H}, 11.8 . \mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.09$; $\mathrm{H}, 11.50 \%$ ); $v_{\text {max }} / \mathrm{cm}^{-1} 910,990,1030,1080,1130,1210,1355$, 1455, 2940 and $3000 ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.9(14 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.9-2.1\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 9-\mathrm{H}_{2}\right), 2.73(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 7$, $\left.6-\mathrm{H}_{2}\right), 3.3-3.9\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.58(1 \mathrm{H}, \mathrm{brt}, J 4, \mathrm{OCHO})$ and $5.3-5.5(4 \mathrm{H}, \mathrm{m}, \mathrm{HC=CH}) ; m /=280\left(\mathrm{M}^{+}, 1 \%\right), 196(3), 178(3)$, 121 (3), 95 (6), 93 (5), 85 (100), 84 (17), 79 (10), 67 (17), 57 (10), 55 (13), 43 (12) and 41 (15).
(4E,7Z)-Trideca-4,7-dien-1-ol 42.-As described above for the alcohol 14a, starting from the ether $41(0.31 \mathrm{~g}, 1.1 \mathrm{mmol})$ and PPTS ( $30 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) in methanol ( $10 \mathrm{~cm}^{3}$ ), the crude title product $(0.3 \mathrm{~g})$ was obtained, which was then chromatographed on silica gel ( 6 g ) with gradient elution from hexane to hexane-diethyl ether (88:12) to give the alcohol $\mathbf{4 2}^{60}(0.2 \mathrm{~g}$, $92 \%$ ) as a liquid, b.p. $94-95^{\circ} \mathrm{C}$ at $0.025 \mathrm{mmHg} ; n_{\mathrm{D}}{ }^{1}{ }^{1} 1.4690 ; \delta_{\mathrm{H}}$ $0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me}), 1.2-1.5\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.64(2 \mathrm{H}$, quint, $J 7$, $\left.2-\mathrm{H}_{2}\right), 1.95-2.15\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 9-\mathrm{H}_{2}\right), 2.74\left(2 \mathrm{H}, \mathrm{brt}, J 7,6-\mathrm{H}_{2}\right)$, $3.67\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(4 \mathrm{H}, \mathrm{m}, \mathrm{HC}=\mathrm{CH})$.
(4E,7Z)-Trideca-4,7-dienyl Acetate 43.-As described above for the acetate 22, starting from the alcohol $42(0.17 \mathrm{~g}, 0.87$ $\mathrm{mmol})$, acetic anhydride ( $0.18 \mathrm{~g}, 1.76 \mathrm{mmol}$ ), DMAP ( 10 mg ), and pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$, the crude title product ( 0.21 g ) was obtained, which was chromatographed on silica gel ( 5 g ) with gradient elution from hexane to hexane-diethyl ether (95:5) to yield the title compound $43^{60}(205 \mathrm{mg}, 99 \%)$ as a liquid, b.p. $89-90^{\circ} \mathrm{C}$ at $0.02 \mathrm{mmHg} ; n_{\mathrm{D}}^{21} 1.4558 ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{Me})$, 1.2-1.4 ( $6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ ), $1.69\left(2 \mathrm{H}\right.$, quint, $\left.J 7,2-\mathrm{H}_{2}\right), 1.95-2.15$ $\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 9-\mathrm{H}_{2}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.73(2 \mathrm{H}, \mathrm{br} \mathrm{t}$, $\left.J 7,6-\mathrm{H}_{2}\right), 4.07\left(2 \mathrm{H}, \mathrm{t}, J 7,1-\mathrm{H}_{2}\right)$ and $5.3-5.5(4 \mathrm{H}, \mathrm{m}, \mathrm{HC=CH})$.

## References

1 H. J. Bestmann and O. Vostrowsky, in Chemie der Pflan-enschutzund Schädlingshekämpfungsmittel, ed. R. Wegler, Springer-Verlag, Berlin, Heidelberg and New York, 1981, vol. 6, p. 29; R. Baker and J. W. S. Bradshaw, in Aliphatic and Related Natural Product Chemistry, ed. F. D. Gustone, The Royal Society of Chemistry. London, 1983, vol. 3, p. 66; R. Baker and R. H. Herbert, Nat. Prod. Rep., 1984, 1, 299.
2 T. Ando, M. Koike, M. Uchiyama and H. Kuroko, Agric. Biol. Chem., 1987, 51, 2691
3 K. Mori, in Total Sinthesis of Natural Products, ed. J. ApSimon, Wiley, New York. 1981, vol. 4, p. 1; P. E. Sonnet, in Techniques in Pheromone Research, eds. H. E. Hummel and T. A. Miller, SpringerVerlag, New York, Berlin. Heidelberg and Tokyo, 1984, p. 371.
4 A. M. Moisseenkov, B. A. Czeskis, N. M. Ivanova and O. M. Nefedov. Org. Prep. Proced. Int., 1990, 22, 215; B. A. Czeskis, N. M. Ivanova, A. M. Moiseenkov and O. M. Nefedov, Izr. Akad. Nauk SSSRR, Ser. Khim.. 1990, 2025.
5 B. A. Czeskis, N. M. Ivanova, A. M. Moiseenkov and O. M. Nefedov, I:c. Akad. Nauk SSSR, Ser. Khim., 1990, 2539; N, M. Ivanova. B. A. Czeskis. E. V. Rubanova, V. G. Yatzynin, A. M. Moiseenkov and O. M. Nefedov, İc. Akad. Nauk SSSR. Ser. Khim.. 1991. 640.

6 H. N. C. Wong. M.-Y. Hon. C.-W. Tse and Y.-C. Yip. Chem. Ret.. 1989. 89. 165: M. C. Aploim. A. D. Morris. W. B. Motherwell and
D. M. O'Shea, Tetrahedron Lett., 1988, 29, 4173; S. Kanemoto, M. Shimizu and H. Yoshioka, J. Chem. Soc., Chem. Commun., 1989, 690; S. Kanemasa, T. Otsuka, K. Doi, O. Tsuge and E. Wada, Synthesis, 1990, 1167; R. F. Childs, M. D. Kostyk, C. J. L. Lock and M. Makendran. J. Am. Chem. Soc., 1990, 112, 8912.
7 K. Mori. J. Fukami and T. Ohtaki, Agric. Biol. Chem., 1971, 35, 1116 ; K. Mori. Tetrahedron, 1972, 28, 3747.

8 R. A. Myrsina and N. V. Kuznetsov, Ukr. Khim. Zh. (Russ. Ed.), 1976, 42, 407 (Chem. Abstr., 1976, 85, 20649b).
9 R. T. Hrubiec and M. B. Smith, J. Org. Chem., 1984, 49, 431.
10 Preliminary communication, A. M. Moiseenkov, B. A. Czeskis, N. M. Ivanova and O. M. Nefedov, Mendeleev Commun., 1991, 13.
11 T. Mukaiyama, Org. React., 1982, 28, 203; M. Vaultier, P. H. Lambert and K. Carriè, Bull. Soc. Chim. Fr., 1986, 83; P. Sulmon, N. DeKimpe and N. Schamp, Sinthesis, 1989, 8.
12 V. V. Veselovsky, A. S. Gybin, A. V. Lozanova, A. M. Moiseenkov, V. A. Smit and R. Caple, Tetrahedron Lett., 1988, 29, 175; R. B. Mitra and G. B. Reddy, Svithesis, 1989, 694.
13 M. Julia, M. Launay, J.-P. Stacino and J.-N. Verpeaux, Tetrahedron Lett., 1982, 23, 2465; J. Bremmer, M. Julia, M. Launay and J.-P. Stacino, Tetrahedron Lett., 1982, 23, 3265; M. Julia and J.-P. Stacino, Tetrahedron, 1986, 42, 2469
14 M. Tamura and J. Kochi, Synthesis, 1971, 303.
15 M. Gardette, N. Jabri, A. Alexakis and J. F. Normant, Tetrahedron, 1984, 40, 2741.
16 J. H. Tumlinson, C. E. Yonce, R. E. Doolittle, R. R. Heath, C. R. Gentry and E. R. Mitchell, Science, 1974, 185, 614; M. G. Karandinos, J. H. Tumlinson and T. D. Eichlin, J. Chem. Ecol., 1977, 3, 57; D. K. Reed, T. D. Eichlin and G. L. Reed, Environ. Entomol., 1981, 10, 488.
17 S. Voerman, H. Audemard and E. Priesner, Entomol. Exp. Appl., 1983, 34, 203; X. Zhang, G. Guo, G. Lin, Y. Wu, P. Wu, Z. Li and K. Wei, J. Chem. Ecol., 1986, 12, 1263.
18 D. G. Nielsen, F. F. Purrington, R. L. Campbell, T. R. Wilmot, J. Capizzi and J. H. Tumlinson, Environ. Entomol., 1978, 7, 544.
19 E. Priesner, P. Witzgall and S. Voerman, J. Appl. Entomol., 1986, 102, 195.

20 T. G. Gray, K. N. Slessor, R. F. Shepherd, G. G. Grant and J. F. Manville, Can. Entomol., 1984, 116, 1525.
21 C. J. H. Booij, S. Voerman and L. P. M. Willemse, J. Appl. Entomol., 1986, 102. 2539.
22 T. G. Gray. K. N. Slessor, G. G. Grant, R. F. Shepherd, E. N. Holsten and A. S. Tracey, Can. Entomol., 1984, 116, 51.
23 J. M. Vakenti. A. P. Gaunce, K. N. Slessor, G. G. S. King, S. A. Allan, H. F. Madsen and J. H. Borden, J. Chem. Ecol., 1988, 14, 605.

24 C. Loefstedt and W. M. Herrebout, Entomol. Exp. Appl., 1988, 46, 29.
25 P. J. Silk, E. W. Butterworth, L. P. S. Kuenen, C. J. Northcott and E. G. Ketela, J. Chem. Ecol., 1988, 14, 1417.

26 E. W. Underhill, A. P. Arthur and P. G. Mason, Environ. Entomol., 1986, 15, 1063.
27 M. Toth, C. Lofstedt, B. S. Hansson, G. Szocs and A. I. Farag, Entomol. Exp. Appl., 1989, 51, 107.
28 C. J. Persoons, S. Voerman, C. Van der Kraan and C. J. H. Booij, Entomol. Exp. Appl., 1984, 35, 101.
29 W. A. Wolf and W. L. Roelofs, J. Chem. Ecol., 1987, 13, 1019
30 C. J. Sanders and E. A. Meighen, J. Chem. Ecol., 1987, 13, 1749.
31 L. P. M. Willemse, C. J. H. Booij and S. Voerman, J. Appl. Entomol., 1987, 103, 508.
32 W. Baltensweiler and E. Priesner, J. Appl. Entomol., 1988, 106, 217.
33 E. Priesner. H. Bogenschutz and C. Loefstedt, Z. Naturforsch., Teil C, 1988, 43, 918.

34 G. C. Lonergan, B. M. Ponder, W. D. Seabrook and L. R. Kipp. J. Chem. Ecol., 1989, 15, 2495.
35 T. E. Bellas, R. J. Bartell and A. Hill, J. Chem. Ecol., 1983, 9, 503; S. J. Muggleston and S. P. Foster, Phisiol. Entomol., 1989, 14, 443.

36 H. J. Bestmann, A. B. Attygalle, J. Schwarz, W. Carbe, O. Vostrowsky and I. Tomida, Tetrahedron Lett., 1989, 30, 2911.
37 A. L. Gemal and J.-L. Luche, J. Am. Chem. Soc., 1981, 103, 5454.
38 K. Ogawa and A. Yamamoto, G.P. 3814 465, 1989 (Chem. Ahstr., 1990, 112, 114214j); G. G. Melikyan, G. H. Aslanyan, K. A. Aganesyan and D. A. Mkrtchyan, Khim. Prir. Soedin., 1990, 102.
39 W. L. Roelofs, J. P. Kochansky, R. T. Carde, G. G. Kennedy, C. A. Henrick, J. N. Labovitz and V. L. Corbin, Life Sci., 1975, 17, 699; O. G. Bacon, J. N. Seiber and G. G. Kenned y, J. Econ. Entomol., 1976, 69. 569; M. Toth, T. E. Bellas and G. H. L. Rothschild, J. Chem. Ecol., 1984, 10, 271; T. Ono and S. Orita, Appl. Entomol. Zool., 1986, 21, 632; T. Ono, R. E. Charlton and R. T. Carde, J. Chem. Ecol., 1990, 16, 531.

40 W. Coppens and N. Schamp, Bull. Soc. Chim. Belg., 1972. 81, 643.
41 A. Chattopadhyay, V. R. Mamdapur and M. S. Chadha, Indian J. Chem., Sect. B, 1983, 22, 1221.
42 V. Dedek and P. Trska, Collect. Czech. Chem. Commun., 1970, 35, 651.
43 M. Julia and C. Blasioli, Bull. Soc. Chim. Fr., 1976, Pt. 2, 1941.
44 P. Vinczer, Z. Juvancz, L. Novak and Cs. Czantay, Acta Chim. Hung., 1987, 125, 737; K. Nishitani, M. Isozaki and K. Yamakawa, Chem. Pharm. Bull., 1990, 38, 28
45 P. Audin, A. Doutheau and J. Gore, Bull. Soc. Chim. Fr., 1984, Pt. 2, 297.

46 M. Miyashita, A. Yoshikoshi and P. A. Grieco, J. Org. Chem., 1977, 42, 3772.
47 M. Horiike, M. Tanouchi and C. Hirano, Agric. Biol. Chem., 1980, 44, 257.
48 H. J. Bestmann, O. Vostrowsky, K. K. Koschatzky, H. Platz, T. Brosche, I. Kantardjiew, M. Rheinwald and W. Knauf, Angew: Chem., 1978, 90, 815; A. D. Buss, N. Greeves, R. Mason and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1987, 2569.
49 H. J. Bestmann, K. H. Koschatzky and O. Vostrowsky, Liehigs Ann. Chem., 1982, 1478.
50 R. Rossi and A. Carpita, Gazz. Chim. Ital., 1978, 108, 709.
51 S.-K. Kang, W.-S. Kim and B.-H. Moon, Synthesis, 1985, 1161.
52 C. Canevet, T. Röder, O. Vostrowsky and H. J. Bestmann, Chem. Ber. 1980, 113, 1115.
53 H. C. Brown, H. D. Lee and S. U. Kulkarni, J. Org. Chem., 1986, 51, 5282.

54 E. J. Corey and J. W. Suggs, Tetrahedron Lett., 1975, 2647.
55 M. Uchida, K. Mori and M. Matsui, Agric. Biol. Chem., 1978, 42, 1067; A. Yamamoto, T. Ishihara and T. Fukumoto, Agric. Biol. Chem., 1989, 53, 285; M. Hoskovec, D. Saman and B. Koutek, Collect. Czech. Chem. Commun., 1990, 55, 2270
56 C. Descoins, D. Samain, B. Lalanne-Cassou and M. Callois, Bull. Soc. Chim. Fr., 1977, 941.
57 H. J. Bestmann, J. Süss and O. Vostrowsky, Liehigs Ann. Chem., 1981, 2117.
58 J. W. Patterson, Synthesis, 1985, 337.
59 P. E. Sonnet, Synthesis, 1980, 828.
60 H. J. Bestmann, T. Zeibig and O. Vostrowsky, Sinthesis, 1990, 1039.

Paper 1/02810C
Received 11th June 1991 Accepted 25th June 1991


[^0]:    1 Cyclopropyl-3-hydroxyheptan-1-one 2b.--Similarly, a sol-

